История со студентом, представившим 4D-куб и отъехавшим в дурку широко известна.
Скорее, не история, а байка.
Вообще как-то дико видеть это превращение в мистику простого и технического навыка, который получают сотни студентов в год во множестве вузов, чисто в рутинном порядке. Я такое встречал только в отношении ещё двух вещей: "понять теорию относительности" и "понять квантовую механику".
3D-образ может собираться "по рецепту": взять такой-то примитив, сделать с ним что-то.
Точно так же можно и во всех остальных случаях. И это широко используется.
Например:
1. Взять отрезок. Взять точку вне этого отрезка, не на его продолжении, соединить её со всеми точками отрезка. Получится треугольник.
2. Взять треугольник. Взять точку вне этого треугольника, не в его плоскости, соединить её со всеми точками треугольника. Получится тетраэдр.
3. Взять тетраэдр. Взять точку вне этого тетраэдра, не в его плоском подпространстве, соединить её со всеми точками тетраэдра. Получится 4-симплекс.
1. Взять пять одинаковых тетраэдров. Раскрасить их в пять цветов. У каждого тетраэдра покрасить все его грани в четыре "не его" цвета.
2. Склеить два тетраэдра гранями, так что цвет грани соответствует цвету приклеиваемого тетраэдра. Форма граней одинакова, и склеивание возможно точное.
3. Продолжить склеивание всех остальных тетраэдров по всем граням. Получится 3-поверхность 4-симплекса.
1. Взять полусферу.
2. Для каждой точки на границе полусферы найти противоположную (по отношению к центру сферы). Склеить попарно все такие точки. Получится эллиптическое 2-пространство, или проективная плоскость (в зависимости от деталей определений, последнее может быть не совсем точным).
1. Взять шар.
2. Для каждой точки его сферической поверхности найти противоположную (по отношению к центру шара). Склеить попарно все такие точки. Получится пространство, топологически изоморфное эллиптическому 3-пространству или проективному 3-пространству.
1. Взять додекаэдр.
2. Рассмотреть две противоположные грани - пятиугольники. Они повёрнуты: там, где у одного пятиугольника рёбра, у другого вершины. Их можно совместить поворотом одного из них на
и параллельным переносом в пространстве. Склеить попарно все точки граней, совмещённые таким движением.
3. Выбрать для всех остальных пар граней додекаэдра такое же направление поворота (например, "ближнюю по часовой стрелке, глядя снаружи додекаэдра"). Склеить их между собой аналогично. Получится гомологическая сфера Пуанкаре.