2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Непрерывность функции (Давидович)
Сообщение15.01.2018, 15:29 


21/02/16
483
grizzly
svv
спасибо за замечания!
grizzly в сообщении #1283544 писал(а):
Я не помню точно, как мы определяли отрезок в этом курсе, но кажется так, что множество $[a,a]$ считалось отрезком, состоящим из одной точки. Если так, ...
Нет, не так. По определению 8 листка 8, для отрезка $[a,b]$ обязательно выполнено $a<b$.

-- 15.01.2018, 15:31 --

grizzly в сообщении #1283879 писал(а):
irod в сообщении #1283540 писал(а):
Введем на $[a,b]$ функцию $g=f-y$.
Вот это нехорошая запись, старайтесь избегать подобного точно так же, как в физике не прибавляют километры к килограммам. Лучше записать так: введем на $[a,b]$ функцию $g\colon g(x)=f(x)-y$.
Ок.

-- 15.01.2018, 16:12 --

grizzly в сообщении #1283879 писал(а):
Но svv сделал серьёзное замечание.
svv в сообщении #1283541 писал(а):
Лучше так: По определению непрерывности, $$\forall\varepsilon>0\ \exists\delta'>0\ \forall x\in U_{\delta'}(b)\ f(x)\in U_{\varepsilon}(f(b))$$
Ок.
svv в сообщении #1283541 писал(а):
Тут понятно, что такое $\delta'$. А тут — нет:
irod в сообщении #1283486 писал(а):
$$\exists\delta>0\ \forall x\in U_{\delta}(a)\ \varphi(x)\in U_{\delta'}(b)$$
Если честно, я не понял почему это замечание серьезное.
Тут достаточно будет добавить фразу:
И по определению непрерывности для этого $\delta'$ выполнено $$\exists\delta>0\ \forall x\in U_{\delta}(a)\ \varphi(x)\in U_{\delta'}(b)$$
?

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение15.01.2018, 16:34 


21/02/16
483
grizzly в сообщении #1283879 писал(а):
irod в сообщении #1283486 писал(а):
(видимо, тут имеется в виду композиция любого числа непрерывных функций)
Нет. Имеется в виду, что непрерывна композиция функций в любой точке области определения функции, которая действует первой. Вероятно, цель задачи состоит в том, чтобы напомнить определение композиции отображений и аккуратно записать очевидное.

-- 14.01.2018, 00:05 --

Чтобы убедиться в правильной трактовке условия этой задачи сравните определения непрерывности функции в точке и непрерывной функции.
По определению из листка 3, композицией функций $\varphi:X\to Y\subset\mathbb{R}$ и $f:Y\to Z\subset\mathbb{R}$ является такая функция $g:X\to Z$, что $g(x)=f(\varphi(x))$.
По определению непрерывной функции, $\varphi$ непрерывна в каждой точке $x\in X$, $f$ непрерывна в каждой точке $y\in Y$. Согласно пункту а), функция $g=f\circ\varphi$ непрерывна в каждой точке $x\in X$, т.е. является непрерывной функцией.

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение15.01.2018, 17:02 
Заслуженный участник
Аватара пользователя


09/09/14
6328
irod в сообщении #1284279 писал(а):
Если честно, я не понял почему это замечание серьезное.
Тут достаточно будет добавить фразу:
И по определению непрерывности для этого $\delta'$ выполнено

Да, всё нормально. Только если функций больше чем одна, обязательно в каждом случае указывайте, непрерывность какой Вы используете.
(Мне показалось, что был более серьёзный разрыв логики, уже не важно.)

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение16.01.2018, 14:51 


21/02/16
483
grizzly в сообщении #1283544 писал(а):
irod в сообщении #1283540 писал(а):
В случае $f(a)=f(b)$ отрезков $[f(a),f(b)]$ и $[f(b),f(a)]$ не существует, и считаем утверждение задачи выполненным.
Я не помню точно, как мы определяли отрезок в этом курсе, но кажется так, что множество $[a,a]$ считалось отрезком, состоящим из одной точки. Если так, то лучше сказать, что в случае $f(a)=f(b)$ отрезок $[f(a),f(b)]$ вырожден и утверждение задачи тривиальным образом выполнено (это один из распространённых математических "канцеляритов").
irod в сообщении #1284279 писал(а):
По определению 8 листка 8, для отрезка $[a,b]$ обязательно выполнено $a<b$.
Тогда наверное лучше всего написать так:
В случае $f(a)=f(b)$ утверждение задачи тривиальным образом выполнено.

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение17.01.2018, 15:11 


21/02/16
483
Задача 12.
Верно ли, что для монотонных функций справедливо утверждение, обратное утверждению задачи 11, то есть из условия $\forall y\in[f(a),f(b)]\ \exists x\in[a,b]\ f(x)=y$ следует, что функция $f$ непрерывна на отрезке $[a,b]$.

Ответ: да.

Доказательство.
Пусть для монотонно неубывающей функции $f:[a,b]\to\mathbb{R}$ выполнено $f(a)<f(b)$, и пусть $\forall y\in[f(a),f(b)]\ \exists x\in[a,b]\ f(x)=y$.
Для удобства пронумерую свои утверждения (просто хочу попробовать такой новый для себя стиль; мне нумерация помогла более четко все осмыслить; напишите пожалуйста, стОит ли так делать, или нет).
1) Возьмем произвольную точку $c\in[a,b]$.
2) Имеем из монотонного неубывания $f$: $f(a)\leq f(c)\leq f(b)$.
3) Возьмем произвольный $\varepsilon$ такой, что $0<\varepsilon<\min\left(f(c)-f(a),f(b)-f(c)\right)$.
4) Обозначим $y_1=f(c)-\varepsilon,y_2=f(c)+\varepsilon$; по условию существуют $x_1,x_2$ такие, что $f(x_1)=y_1,f(x_2)=y_2$.
5) Причем из монотонного неубывания $f$ следует, что $a\leq x_1<c<x_2\leq b$.
6) Пусть $\delta=\min\left(c-x_1,x_2-c\right)$.
7) Имеем из монотонного неубывания $f$: $\forall x\in U_\delta(c)\ f(x)\in U_\varepsilon(f(c))$, что по определению означает непрерывность $f$ в точке $c$.

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение17.01.2018, 15:46 
Заслуженный участник
Аватара пользователя


09/09/14
6328
irod в сообщении #1285013 писал(а):
просто хочу попробовать такой новый для себя стиль; мне нумерация помогла более четко все осмыслить; напишите пожалуйста, стОит ли так делать, или нет
Я в этом особого греха не вижу -- если нумерация Вам помогает, пусть будет. Я не сомневаюсь, что если Вам понадобится писать что-то в научном стиле, то избавиться от лишней нумерации (когда задача уже решена) будет совсем просто.
irod в сообщении #1285013 писал(а):
3) Возьмем произвольный $\varepsilon$ такой, что $0<\varepsilon<\min\left(f(c)-f(a),f(b)-f(c)\right)$.
Формально Вы должны провести доказательство для любого положительного $\varepsilon $. Понятно, конечно, что нас интересуют только близкие к нулю. Расписывать это подробно точно не нужно, но чтобы соблюсти формальности лучше сделать какую-то оговорку. Например так:

    Возьмем произвольный $\varepsilon>0$. Можно считать, что $\varepsilon<\min\left(f(c)-f(a),f(b)-f(c)\right)$.

Или можно использовать математический канцелярит: "не уменьшая общности будем считать, что...". Это некий аналог того же "очевидно", но его использование более специфично. В данном случае Вы показываете, что сознательно сужаете требования определения, и при этом считаете очевидным, что доказательство от этого не страдает.

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение17.01.2018, 18:02 
Заслуженный участник
Аватара пользователя


23/07/08
10908
Crna Gora

(Оффтоп)

irod в сообщении #1284279 писал(а):
Если честно, я не понял почему это замечание серьезное.
Извините, что не ответил раньше.
irod в сообщении #1283486 писал(а):
По определению непрерывности,$$\exists\delta'>0\ \forall x\in U_{\delta'}(b)\ f(x)\in U_{\varepsilon}(f(b)),$$ $$\exists\delta>0\ \forall x\in U_{\delta}(a)\ \varphi(x)\in U_{\delta'}(b).$$Объединив эти два факта, получим что
Я воспринял это как две отдельные формулы (думаю, и grizzly тоже). Этому способствовали и слова «по определению», и размещение в две строки, и особенно слова «объединив эти два факта». При таком понимании написанного замечание становится серьёзным. Если же это одна формула, записанная в две строки, и в ней подразумевается записанное выше словами $\forall\varepsilon>0$, то нет. :-)

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение18.01.2018, 18:43 


21/02/16
483
svv
Ок.
grizzly
Я наверное создам себе отдельную заметку с математическими канцеляритами, добавлю туда для начала "тривиальным образом выполнено" и "не уменьшая общности..." с Вашими объяснениями, и буду наполнять ее по мере своего обучения. Спасибо!

Есть вопрос по следующей задаче.

Задача 13.
Пусть $P$ -- многочлен нечетной степени. Доказать, что найдется такое $a\in\mathbb{R}$, что $P(a)=0$.

С многочленами я почти не сталкивался до этой задачи, ну разве что на школьном уровне, да еще в листке 14 есть конкретные функции, но чтобы вот так формально про них что-то доказывать - такого еще не было. Я понимаю, что начать тут надо с выписывания формального определения многочлена, далее я наверное пойду в Википедию. Но хотелось бы использовать эту задачу как предлог немного въехать в тему многочленов (хоть и немного, но качественно, а не на уровне чтения Википедии). Я знаю что их проходят в курсе общей (абстрактной) алгебры, но я до него пока не добрался. В идеале хотелось бы найти какой-нибудь маленький листок с основными фактами. Не подскажете такой? Ну или подскажите, где можно (и где лучше) про них кратко прочитать для моего уровня. Помимо этой задачи из Давидовича, многочлены мне понадобятся для 4-й главы книги Linear Algebra Done Right, которую я по-тихоньку прохожу самостоятельно. Хотелось бы подойти к этой главе LADR уже подготовленным.

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение18.01.2018, 20:11 


07/08/16
328
irod в сообщении #1285457 писал(а):
Задача 13.
Пусть $P$ -- многочлен нечетной степени. Доказать, что найдется такое $a\in\mathbb{R}$, что $P(a)=0$.

Есть очень красивое решение, данной задачи, которое опирается на
1)Соображения непрерывности.
2)Соображения монотонности.
Возьмите произвольный многочлен нечетной степени и попробуйте подставить в него бОльшие положительные, бОльшие отрицательные числа. Взгляните после этого на декартову плоскость, прикиньте, как будет выглядеть график, опираясь на ваши расчеты. А далее 1) и 2).

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение22.01.2018, 15:06 


21/02/16
483
Sdy
я придумал доказательство, но в нем не используется монотонность.
irod в сообщении #1285457 писал(а):
Задача 13.
Пусть $P$ -- многочлен нечетной степени. Доказать, что найдется такое $a\in\mathbb{R}$, что $P(a)=0$.
По условию, $P(x)=\sum\limits_{i=0}^n c_ix^i$, где $n$ -- нечетное целое положительное число, $c_i$ -- фиксированные коэффициенты, $c_n\neq 0$.
$P$ непрерывен как сумма непрерывных функций-одночленов $c_ix^i$.
Старший член $c_nx^n$ растет быстрее других членов с меньшими степенями. Следовательно, знак $P$ определяется знаком $c_nx^n$, начиная с некоторого $x$. Нечетность $n$ означает, что $c_nx^n$ меняет знак на противоположный одновременно со сменой знака $x$. Следовательно, множество значений $P$ содержит как положительные, так и отрицательные значения.
Искомое $a$ существует согласно задаче 10.

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение01.02.2018, 14:55 


21/02/16
483
Прошу подсказок по следующей задаче:

Задача 14.
Пусть функция $f$ непрерывна на отрезке $[a,b]$. Доказать, что
а) функция $f$ ограничена на $[a,b]$;
б) для любого замкнутого множества $M\subset[a,b]$ его образ $f(M)$ замкнут.

В первую очередь по первому пункту, над вторым наверное еще сам подумаю.
Такое чувство что должна быть не сложная задача, но вот что-то не идет.
Пока мысли следующие.
Из определения непрерывности в точке следует, что функция ограничена в некоторой окрестности этой точки; можно попробовать представить весь отрезок $[a,b]$ как объединение конечного числа таких окрестностей. Но как доказать что их будет конечное число?
Может быть построить систему вложенных отрезков: берем центр $c\in[a,b]$, вырезаем из $[a,b]$ $U_\delta(c)$, где $\delta$ из определения непрерывности. Далее, на каждом шаге число отрезков увеличивается вдвое, а длина каждого минимум вдвое меньше чем длина предыдущего отрезка. Доказать, что в итоге от отрезков ничего не останется?
Еще пробовал от противного: пусть $\forall C\ \exists x\in[a,b]\ |f(x)|>C$. Тут надо прийти к противоречию с задачей 11?
Пока никакая из этих идей меня никуда не привела.

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение01.02.2018, 15:28 
Заслуженный участник
Аватара пользователя


09/09/14
6328
irod в сообщении #1289122 писал(а):
пусть $\forall C\ \exists x\in[a,b]\ |f(x)|>C$.
Вот это неплохая идея. Вы можете получить целую последовательность таких $x$, для которых значение функции будет уходить на бесконечность. Скажем, $f(x_n)=y_n>n$. Тут ведь что самое главное в этой задаче? что на отрезке (области определения) функция принимает конкретные (конечные) значения в каждой точке. Остановлюсь пока на этом -- Ваш ход :)

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение02.02.2018, 08:52 
Заслуженный участник


11/05/08
32166
irod в сообщении #1289122 писал(а):
пусть $\forall C\ \exists x\in[a,b]\ |f(x)|>C$. Тут надо прийти к противоречию с задачей 11?

Нет, 11-я тут не при чём, а перефразировка grizzly Вашей идеи намекает на последующее обращение к принципу компактности.

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение02.02.2018, 13:53 


21/02/16
483
grizzly
спасибо, кажется догадался.
irod в сообщении #1289122 писал(а):
Задача 14.
Пусть функция $f$ непрерывна на отрезке $[a,b]$. Доказать, что
а) функция $f$ ограничена на $[a,b]$;
Доказательство.

От противного. Предположим, что $f$ не ограничена на $[a,b]$, т.е. $\forall C\ \exists x\in[a,b]\ |f(x)|>C$.
Пусть $(x_n)$ -- последовательность из чисел отрезка $[a,b]$ такая, что последовательность $(f(x_n))$ стремится к бесконечности.
Последовательность $(x_n)$ ограничена, и значит имеет более одной предельной точки (задача 13 листка 11).
Возьмем произвольную предельную точку $c$ последовательности $(x_n)$, и пусть $(x_k)$ -- сходящаяся к $c$ подпоследовательность $(x_n)$. По определению непрерывности функции в точке, последовательность $(f(x_k))$ сходится к $f(c)$ и, следовательно, ограничена (задача 12 листка 11).
За вычетом сходящихся подпоследовательностей, в $(x_n)$ останется не более конечного числа членов. Конечное число соответствующих значений $f$ ограничено.
Таким образом, последовательность $(f(x_n))$ ограничена.
Полученное противоречие доказывает ограниченность $f$ на $[a,b]$.

 Профиль  
                  
 
 Re: Непрерывность функции (Давидович)
Сообщение02.02.2018, 14:05 
Аватара пользователя


07/01/15
1223
irod в сообщении #1289420 писал(а):
За вычетом сходящихся подпоследовательностей, в $(x_n)$ останется не более конечного числа членов.

На самом деле, возможен и такой случай, когда после вычета останется бесконечное количество членов.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 69 ]  На страницу Пред.  1, 2, 3, 4, 5  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: BVR, skobar


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group