2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Задача с МФО
Сообщение26.11.2017, 16:28 
Аватара пользователя
EUgeneUS в сообщении #1269222 писал(а):
перестанет зависеть от модели трения

Уважаемый EUgeneUS, прокомментируйте ответ для квадратичного трения, будьте любезны. Он противоречит вашим словам о независимости от модели трения.

-- 26.11.2017, 16:29 --

Rusit8800 в сообщении #1269227 писал(а):
первой части

Указание о силе трения распространяется на всю задачу. Подразумевается, что решающие выданную задачу это понимают.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 16:36 
Аватара пользователя
Rusit8800 в сообщении #1269223 писал(а):
Мне даже переходить в другую систему отсчета не пришлось.


Но пришлось придумать волшебную воду :lol:
Сделайте такой же чертеж в СО воды, и моментально произойдет другое волшебство, которое сведет первую часть задачи к устной.
Rusit8800 в сообщении #1269223 писал(а):
Ведь в ответах не используется $k$. Но если трение не имеет значения, то что я сделал не так?

В первой части задачи, трение имеет значение, а $k$ и вообще вид зависимости модуля силы трения от модуля скорости - не имеет значения.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 16:37 
Аватара пользователя
Кажется понял, я не прав в том, что $v_0$ постоянно. Сейчас проинтегрирую.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 16:37 
Аватара пользователя
StaticZero в сообщении #1269228 писал(а):
Уважаемый EUgeneUS, прокомментируйте ответ для квадратичного трения, будьте любезны. Он противоречит вашим словам о независимости от модели трения.

У меня сложилось впечатление, что Вы использовали ошибочный чертеж ТС, более подробно не разбирался.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 16:40 
Аватара пользователя
EUgeneUS в сообщении #1269231 писал(а):
Вы использовали ошибочный чертеж

Я использовал уравнения движения в проекциях $F_x = -k(u-v_x)^2$, $F_y=-kv_y^2$, где ось $Oy$ направлена ортогонально, $Ox$ вдоль течения. Граничные условия $\mathbf v(0) = (0, v_0)$.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 16:42 
Аватара пользователя
Перейдем в систему отсчета, связанную с водой. Найдем время $\[\tau \]$, за которое лодка переплывет реку.Если его умножить на скорость течения реки, то получим требуемое. Запишем второй закон Ньютона:
$$\[m\frac{{d{v_0}}}{{dt}} =  - k{V_{otn}}\]$$
откуда
$$\[{v_0}(t) = {v_0} - \frac{{k{V_{otn}}}}{m}t\]$$
Далее получим $\[\tau \]$, из уравнения
$$\[\int\limits_0^\tau  {{v_0}(t){\text{ }}dt}  = H\]$$
или
$$\[{v_0}\tau  - \frac{{k{V_{otn}}}}{m} \cdot \frac{{{\tau ^2}}}{2} = H\]$$
Это уравнение меня настораживает. Во-первых, оно квадратное, с непростыми корнями, да еще и двумя. Во-вторых, здесь нет $t$.

-- 26.11.2017, 16:55 --

Мне, кстати, непонятно, чем отличается $t$ от $\[\tau \]$. Судя по ответам, $\[t = \frac{H}{{{V_0}}} + \tau \]$, правда мне это ни о чем не говорит.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 16:58 
Аватара пользователя
Rusit8800 в сообщении #1269233 писал(а):
Перейдем в систему отсчета, связанную с водой.

... и нарисуем чертеж

Rusit8800 в сообщении #1269233 писал(а):
откуда...

... и не забудем, что $Votn$ меняется вместе с $v_0$

Rusit8800 в сообщении #1269233 писал(а):
Далее получим $\[\tau \]$, из уравнения...

Почему Вы приравняли к $H$?

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 16:58 
Аватара пользователя
EUgeneUS в сообщении #1269239 писал(а):
$Votn$ меняется вместе с $v_0$

Блин, я думал это скорость течения...

-- 26.11.2017, 17:00 --

EUgeneUS в сообщении #1269239 писал(а):
Почему Вы приравняли к $H$?

Это расстояние между берегами. Лодка проходит это расстояние за $\[\tau \]$.

-- 26.11.2017, 17:01 --

Я правильно понял, что $\[{v_0} = {V_{otn}}\]$?

-- 26.11.2017, 17:05 --

Правда тогда получается из дифференциального уравнения, что $v_0(t)=0$

-- 26.11.2017, 17:10 --

EUgeneUS в сообщении #1269239 писал(а):
... и нарисуем чертеж

Изображение

-- 26.11.2017, 17:12 --

Я только по спешке забыл нарисовать лодку из которой торчит $\[\overrightarrow {{v_0}(t)} \]$. Прямоугольник - некоторая часть воды.

-- 26.11.2017, 17:22 --

Кажется я понял
$$\[\begin{gathered}
  m\frac{{d{v_x}}}{{dt}} =  - k(u - {v_x}) \hfill \\
  l = \int\limits_o^t {{v_x}(t){\text{ }}} dt \hfill \\ 
\end{gathered} \]$$

-- 26.11.2017, 17:24 --

Хотя, с другой стороны, почему второй закон Ньютона записан не так:
$$\[m\frac{{d{v_x}}}{{dt}} =  - k{v_x}\]$$

-- 26.11.2017, 17:24 --

Я совсем запутался. Вроде бы как решать понятно, а выходит какая-то ерунда.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 17:53 
Аватара пользователя
Rusit8800 в сообщении #1269240 писал(а):
Я только по спешке забыл нарисовать лодку из которой торчит $\[\overrightarrow {{v_0}(t)} \]$.

А теперь вопрос, почему "он торчит" перпендикулярно берегу в СО воды?
Нарисуйте правильно вектор скорости лодки в начальный момент времени в СО воды. И подумайте, что и как этот вектор будет изменять.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 18:08 
Аватара пользователя
EUgeneUS в сообщении #1269254 писал(а):
А теперь вопрос, почему "он торчит" перпендикулярно берегу в СО воды?

Потому что его по условию отправили перпендикулярно берегам.
EUgeneUS в сообщении #1269254 писал(а):
И подумайте, что и как этот вектор будет изменять.

Вначале он равен 0, потом будет создаваться вектор, направленный влево вдоль берегов из-за сопротивления воды.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 18:14 
Аватара пользователя
Rusit8800 в сообщении #1269261 писал(а):
он равен 0,

В вашем случае начальный вектор скорости в СО воды не имеет нулевых компонент.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 18:17 
Аватара пользователя
Rusit8800 в сообщении #1269261 писал(а):
Потому что его по условию отправили перпендикулярно берегам.

перпендикулярно берегам в СО берегов. А в СО воды почему начальная скорость перпендикулярна?

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 18:23 
Аватара пользователя
EUgeneUS в сообщении #1269267 писал(а):
А в СО воды почему начальная скорость перпендикулярна?

Мне интуитивно так кажется :roll:. Я бы мог вывести данный факт из того факта, что скорость относительно берегов равна $\[\overrightarrow {{v_0}}  + \overrightarrow {{V_{otn}}} \]$. Однако, чтобы вывести 1 факт из 2, надо доказать 2 факт, но 2 следует из 1. Порочный круг.

-- 26.11.2017, 18:27 --

StaticZero в сообщении #1269265 писал(а):
В вашем случае начальный вектор скорости в СО воды не имеет нулевых компонент.

Судя по всему, эта скорость находится отсюда:
$$\[m\frac{{d{v_y}}}{{dt}} =  - k{v_y}\]$$
причем $v_y(0)=v_0$.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 18:31 
Аватара пользователя
EUgeneUS
Хорошая качественная задачка.
Странно что раньше на нее не натыкался. Мне особо нравятся задачи, где подходящий выбор СО позволяет их решить практически без вычислений. Обычно это связано с тем, что достаточно сложная двумерная траектория в одной системе вырождается в прямую в другой сисиеме. Как вот в этой задаче.

 
 
 
 Re: Задача с МФО
Сообщение26.11.2017, 18:32 
Аватара пользователя
Rusit8800 в сообщении #1269270 писал(а):
Мне интуитивно так кажется :roll:

В данном случае нужно воспользоваться принципом Галилея.

 
 
 [ Сообщений: 62 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group