Это соответствует моем второй теореме для четных чисел, кратных
.
А почему Вы удивляетесь? Способ настолько простой, что с ним могут разобраться шестиклассники. Почему бы и Вам не додуматься до него, если уж он Вам был неизвестен?
Только Вы почему-то думаете, что есть какая-то разница для чётных и для нечётных чисел, и что есть какая-то проблема для степеней. На самом деле способ во всех случаях один: заданное натуральное число
всевозможными способами представляем произведением
,
, натуральных чисел
и
одинаковой чётности и получаем всевозможные представления разностью квадратов:
И всё. Эта формула содержит все возможные случаи и для чётных чисел, и для нечётных, и для любых степеней.
Ну, если хотите, можно выразить
, подставить, поупрощать. Потом можно для случая
, кратного четырём, явным образом показать множитель
в числе
, тоже поупрощать.
Потом всё это можно сформулировать как отдельные теоремы и долго спорить с множеством специалистов-математиков, добиваясь всемирного признания. Ну, некоторое время они будут убеждать Вас, что ничего нового Вы не открыли. Наконец, кому-нибудь из модераторов ваша неубеждаемость надоест, он снесёт тему в
Пургаторий и запретит возобновлять обсуждение в любом виде. Оно Вам надо? Поверьте, никто не хочет украсть у Вас идею и опубликовать её под своим именем. Я бы, может быть, с удовольствием увидел свою фамилию как автора, например,
статьи по общей топологии, но если я начну публиковать статьи на уровне задач для шестиклассников, коллеги решат, что я от старости совсем выжил из ума.