2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Сумма арифметической прогрессии
Сообщение19.09.2017, 22:13 
Someone
Поясняю, почему я использовал формулу суммы а.пр. Возможно это одно из возможных решений. Пусть количество участников n. Сначала один из участников (любой) пожимает руку всем остальным и уходит. Число рукопожатий на этом этапе равно n-1. Далее, любой следующий участник пожимает руку всем оставшимся и тоже уходит. Получим n-2. И так далее. Для двух оставшихся в конце остается 1 рукопожатие. В такой процедуре исключено повторное рукопожатие и пропуск оного. Далее суммируем и применяем формулу для суммы а.пр., из-за которой и разгорелся весь сыр-бор. Кроме того, мне понравилось в этой задаче число 870 (предполагаемый возраст Москвы). Кстати, а Вы не привели в своем сообщении хотя бы ход Ваших рассуждений для решения задачи.
С уважением, yra.

 
 
 
 Re: Сумма арифметической прогрессии
Сообщение19.09.2017, 22:24 
Аватара пользователя
yra в сообщении #1249046 писал(а):
Кстати, а Вы не привели в своем сообщении хотя бы ход Ваших рассуждений для решения задачи.
А надо? Для задачи на квадратное уравнение?

 
 
 
 Re: Сумма арифметической прогрессии
Сообщение19.09.2017, 22:31 
Аватара пользователя
yra
На этом форуме все-таки не ученики 5 класса общаются... в основном :lol: Задачка про рукопожатия -- простая. Мне кажется, даже для вступительных заданий простовата, а уж тем более -- для олимпиады. Очень странный у нее уровень... Скорее, олимпиада для хуторов, чем мегаполисов.

 
 
 
 Re: Сумма арифметической прогрессии
Сообщение19.09.2017, 23:20 
Аватара пользователя
yra в сообщении #1249046 писал(а):
Кстати, а Вы не привели в своем сообщении хотя бы ход Ваших рассуждений для решения задачи.
Про рукопожатия? Пусть было $x$ человек. Каждый должен пожать $x-1$ руку, при этом каждое рукопожатие будет учтено дважды. Следовательно, всего рукопожатий будет $\frac{x(x-1)}2$. Приравнивая это выражение к заданному числу $435$, получим уравнение, из которого найдём $x$.

Я рекомендую Вам почитать книжечку

И. И. Ежов, А. В. Скороход, М. И. Ядренко. Элементы комбинаторики. "Наука", Москва, 1977.

Anton_Peplov в сообщении #1249050 писал(а):
А надо? Для задачи на квадратное уравнение?
Видимо, yra не сталкивался с комбинаторикой и не знает, как получить уравнение без суммирования арифметической прогрессии.

provincialka в сообщении #1249052 писал(а):
Мне кажется, даже для вступительных заданий простовата
Ну уж какие абитуриенты, такие и задания. А предлагать такую задачу на олимпиаде действительно странно. Может быть, для младших классов? Когда там квадратные уравнения-то изучают?

 
 
 
 Re: Сумма арифметической прогрессии
Сообщение19.09.2017, 23:32 
Аватара пользователя
Someone в сообщении #1249065 писал(а):
Видимо, yra не сталкивался с комбинаторикой и не знает, как получить уравнение без суммирования арифметической прогрессии.
Ну, уж если это - комбинаторика, то вычисление площади прямоугольника - теория меры.
Someone в сообщении #1249065 писал(а):
Когда там квадратные уравнения-то изучают?
Мы, помнится, изучали в восьмом классе. Но это было давно.

 
 
 
 Re: Сумма арифметической прогрессии
Сообщение19.09.2017, 23:40 
Аватара пользователя
Anton_Peplov в сообщении #1249068 писал(а):
Ну, уж если это - комбинаторика, то вычисление площади прямоугольника - теория меры.
Вы правы, конечно, и абитуриенты аналогичную задачу решали, не имея представления о комбинаторике и не суммируя арифметическую прогрессию — так, как я написал. Не все, конечно. Но знакомство с комбинаторикой будет полезным. Мне так кажется.

 
 
 
 Re: Сумма арифметической прогрессии
Сообщение19.09.2017, 23:59 
Аватара пользователя
Будет полезным - это да. Она ум в порядок приводит.

 
 
 [ Сообщений: 37 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group