В итоге получается, что есть основания считать, что сам Ферма получил равенство априори.
В "итоге" ничего подобного не получается. Из моих слов такой вывод сделать нельзя; из тех документов, которые оставил Ферма, и которые сейчас известны, такой вывод тоже никак не следует. Всё, что есть по поводу Великой теоремы Ферма в этих документах — это доказательство для четвёртой степени методом (бесконечного) спуска и упоминания в письмах теоремы для третьей степени, в которых Ферма предполагает, что её тоже можно было бы доказать методом спуска. При этом задача для третьей степени была известна задолго-задолго до Ферма.
И, кроме этого, велика вероятность того, что утверждение и само равенство Ферма являются наглядным примером первой теоремы Гёделя о неполноте.
Само по себе равенство
, понимаемое как формула формального языка арифметики c четырьмя свободными переменными, является ложным, поскольку свободные переменные по умолчанию интерпретируются так, будто на них "навешены" кванторы всеобщности (то есть, это равенство понимается как
). Теорему Ферма на формальном языке можно было бы сформулировать как
Здесь есть ещё засада, связанная с формальным языком арифметики Пеано, в котором нет констант, кроме
, нет неравенств и степеней, поэтому вместо
надо писать, например,
, где "
" обозначает "следующее число", то есть,
, вместо
и
пишем, соответственно,
и
, вместо
—
, а степень определяется с помощью системы (полиномиальных) уравнений, о которой я знаю, что она существует, но никогда её в полностью написанном виде не видел. Правда, можно получить консервативное расширение языка арифметики, введя нужные символы и обозначения и определив их соответствующим образом. Тогда можно будет писать формулы в привычном виде (ну, мы их и пишем так, как нам удобно и привычно).
Ведь и Курт Гёдель и Джузеппе Пеано жили гораздо позже Пьера Ферма, а потому знали и об утверждении Ферма и о проблемах Гильберта.
Аксиомы Пеано были сформулированы на 10 лет раньше, чем проблемы Гильберта. Что касается теорем Гёделя, то я не думаю, что теорема Ферма хотя бы в микроскопической степени повлияла на работу Гёделя. Гёделя мотивировала скорее программа Гильберта по обоснованию математики.
Но, в таком случае, вероятно остаётся один вариант: если доказательство в рамках арифметики Пеано всё же существует, то оно должно одновременно решить обе проблемы, - дать однозначный ответ на утверждение Ферма и, одновременно, на гипотезу Била.
Не вижу никаких оснований для такого утверждения.
Спасибо за потраченное время, Someone, - полностью удовлетворён.
Ввиду сказанного выше думаю, что время я трачу зря.