2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Качение шара по плоскости
Сообщение02.03.2017, 15:37 
Аватара пользователя
Ну да, а что? Дуга окружности, разумеется; не вся окружность.
Вот это-то, наверное, и будет решением. На плоскости - дуга окружности, на шаре - тоже дуга или целая окружность, возможно, пройденная многократно.

 
 
 
 Re: Качение шара по плоскости
Сообщение02.03.2017, 16:18 
Someone в сообщении #1196535 писал(а):
Большего диаметра, но той же длины?

Ну я не ручаюсь что именно имелось в виду под диаметром окружности, нарисованной на шаре, так что комментировать не буду. Но длина должна быть такой же, иначе имеем проскальзывание.

 
 
 
 Re: Качение шара по плоскости
Сообщение03.03.2017, 05:27 
Аватара пользователя
Засовываем шар в конус. Конус катаем по плоскости вокруг острия конуса без проскальзывания. При этом шар, очевидно, катится по плоскости без проскальзывания. Окружность на шаре меньше окружности на плоскости, т.к. катет меньше гипотенузы. Чем тупее конус, тем равнее окружности.

 
 
 
 Re: Качение шара по плоскости
Сообщение03.03.2017, 10:58 
TOTAL в сообщении #1196690 писал(а):
Конус катаем по плоскости вокруг острия конуса без проскальзывания.

Вершина конуса будет проскальзывать, так что вершину надо усечь. Непринципильно, но тем не менее. Иначе из
TOTAL в сообщении #1196690 писал(а):
Чем тупее конус, тем равнее окружности.

в пределе получаем, что шар может вращаться на месте без проскальзывания.

 
 
 
 Re: Качение шара по плоскости
Сообщение03.03.2017, 11:25 
Аватара пользователя
wrest в сообщении #1196704 писал(а):
TOTAL в сообщении #1196690 писал(а):
Конус катаем по плоскости вокруг острия конуса без проскальзывания.

Вершина конуса будет проскальзывать, так что вершину надо усечь

Вершина конуса - это точка, которая не движется относительно плоскости, т.е. не проскальзывает.

 
 
 
 Re: Качение шара по плоскости
Сообщение03.03.2017, 11:30 
Аватара пользователя
Речка движется и не движется.
wrest в сообщении #1196704 писал(а):
шар может вращаться на месте без проскальзывания


Так оно и есть - ось вращения, она, конечно, вращается, но не движется. :D

 
 
 
 Re: Качение шара по плоскости
Сообщение03.03.2017, 11:38 
Аватара пользователя
bot в сообщении #1196708 писал(а):
Речка движется и не движется.
TOTAL в сообщении #1196706 писал(а):
шар может вращаться на месте без проскальзывания

Так оно и есть - ось вращения, она, конечно, вращается, но не движется. :D

А в пределе (когда конус отупеет до 180 градусов) шар даже вращаться не будет, т.к. окружности на шаре и плоскости в пределе сравняются.

 
 
 
 Re: Качение шара по плоскости
Сообщение03.03.2017, 11:48 
Аватара пользователя
А если подойти физически, то вращением точки на месте можно пренебречь силу её исключительно малых размеров. :D

 
 
 
 Re: Качение шара по плоскости
Сообщение03.03.2017, 12:07 
bot в сообщении #1196711 писал(а):
Ещё кароче - вращением точки на месте можно пренебречь в силу её исключительно малых размеров.

Если так, то кратчайшая траектория проекции центра шара на плоскость будет отрезком прямой между начальной и конечной точками для расстояний между начальной и конечной точкой бОльших половины длины большой окружности шара независимо от начального положения выделенной точки на шаре.
Алгоритм простой:
1. Поворачиваем шар на месте так чтобы проекция выделенной точки оказалась на прямой, соединяющей начальную и конечную точку пути (тут два варианта: если выделенная точка ниже центра шара, то поворачиваем так чтобы она была сзади, если выше -- то так чтобы спереди, если на вершине или касается плоскости, то шар не поворачиваем, если на уровне центра, то шар не поворачиваем и переходим к пункту 3).
2. Прокатываем шар по прямой, соединяющей начальную и конечную точку пути до момента, когда выделенная точка окажется на уровне центра шара.
3. Поворачиваем шар на месте так чтобы выделенная точка оказалась ровно сбоку.
4. Прокатываем шар по прямой на такое расстояние, чтобы до конечной точки осталось расстояние равное четверти длины большой окружности.
5. Поворачиваем шар выделенной точкой вперед.
6. Докатываем шар до конечной точки.

 
 
 
 Re: Качение шара по плоскости
Сообщение04.03.2017, 04:09 
Аватара пользователя

(Оффтоп)

wrest, Я на первом предложении застрял. :D

 
 
 
 Re: Качение шара по плоскости
Сообщение04.03.2017, 11:48 
Аватара пользователя
TOTAL в сообщении #1196501 писал(а):
Нарисуем на шаре окружность и проедим этой окружностью по плоскости...

Это как: "едим окружностью плоскость?" Разве окружность может есть плоскость, она же находится ниже плоскости в пищевой цепи? :shock:

 
 
 
 Re: Качение шара по плоскости
Сообщение04.03.2017, 20:11 
statistonline, можно прокладывать маршрут центра сферы по параболе вида $y=px^2+c$. Длина дуги параболы определяется нужным числом оборотов сферы. Точки на параболе и длина однозначно определят уравнение параболы такого вида (вернее, с точностью до расположения вершины относительно отрезка между точками).
Получаете кратчайшее расстояние между точками при заданном условии и для любого радиуса сферы. Похоже, легко программируется.
Или по эллипсу.

 
 
 
 Re: Качение шара по плоскости
Сообщение04.03.2017, 21:53 
Аватара пользователя
Я постараюсь мотивировать утверждение, что шар не может вращаться вокруг вертикальной оси "без проскальзывания", а конус может кататься по плоскости. Именно мотивировать, поскольку речь идет об определении.

Сила давления шара сосредоточена в единственной точке, поэтому возникает малая, но ненулевая сила трения, препятствующая вращению. А сила давления конуса распределена по прямой, поэтому сила трения будет гораздо меньше.

 
 
 
 Re: Качение шара по плоскости
Сообщение05.03.2017, 05:19 
Аватара пользователя
Red_Herring в сообщении #1197187 писал(а):
Я постараюсь мотивировать утверждение ...

И описывать это вращение с применением аппарата обобщённых функций?
В конце концов, кто его вращаться-то заставляет? Для смены направления движения ему нет никакой надобности вращаться.

 
 
 
 Re: Качение шара по плоскости
Сообщение05.03.2017, 05:50 
Аватара пользователя
bot в сообщении #1197259 писал(а):
Для смены направления движения ему нет никакой надобности вращаться.
Безусловно. Но у нас ведь не просто шар, а шар с отмеченной точкой на поверхности, так что разрешение вращаться вокруг вертикальной оси меняет задачу. Поэтому в условиях надо точно оговорить, что понимается под качением без проскальзывания.

Кроме того, этот вопрос здесь обсуждался, и я предложил свой довод в пользу определения, в котором шару запрещено вращаться вокруг вертикальной оси--безотносительно к данной задаче.

 
 
 [ Сообщений: 34 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group