Вы точно не путаете выводимость с истинностью?
Разумеется, выводимость - чётко определённое конструктивное свойство, которое сводится к синтаксическим конструктивным преобразованиям строк, а истинность - это какой-то религиозный символ адептов классической логики (я истинность, разумеется, не отождествляю с формулой, которая говорит, что такая формула с таким-то номером, под интерпретацией с таким-то номером истинна).
У меня первое впечатление было, что вы эту "религиозную истинность" каким-то образом усмотрели в качестве основного результата теорем Гёделя, хотя их предмет --- это выводимость и ничего кроме выводимости. Насчёт второй "интерпретационной истинности" --- это вещь достаточно важная, но лучше называть её тождественная истинность на модели.
И путать её с выводимостью --- это плохая идея, ведь тогда теряется смысл понятия полноты теории.
Рассуждение про разные универсумы и там добавление всяких аксиом, а потом к ним отрицания --- это всё к теореме Гёделя не имеет ну просто никакого отношения. Это очевидные азы мат логики, что мы можем собрать разные версии теорий, комбинирую аксиомы, в том числе беря отрицания каких-то аксиом, и т.д. Вы даже можете от базовых аксиом логики первого порядка отказываться на выбор, но только не нужно при этом говорить что вы это делаете по следствию из теоремы Гёделя.
Только вот теорема Гёделя доказывается в некоторой метатеории, в которой тоже верна теорема Гёделя, только этот момент заметается обычно под ковёр.
Что-то вы опять наделяете теорему Гёделя не характерными для неё свойствами. Про какую такую метатеорию вы говорите? Вроде бы не секрет, что теорема Гёделя о неполноте доказана в рамках логики первого порядка, к которой аксиоматика Пеано присоединена. Она рассуждает про ту самую теорию, в рамках которой эта теория сформулирована и доказана, либо про любую другую, которая включает её как подмножество. Т.е. теорема Гёделя завязана на логику первого порядка и аксиоматику Пеано, и не является небожителем из непонятной метатеории.
То есть сначала говорят, что мы, дескать, должны с чего-то начать, поэтому на метауровне явно или неявно фиксируют какие арифметические теоремы истины, а какие нет, а потом доказывают, что зафиксировать человеческими средствами истинность/неистинность каждой арифметической теоремы согласованным образом нельзя. Ну офигеть теперь.
Что ещё за фиксация истинности арифметических теорем, и почему вы считаете что её нельзя зафиксировать человеческими средствами? Какую истинность вы имеете ввиду: религиозную или тождественную на некой модели? Вообще в целом, у теорем обычно не фиксируется никакая истинность, а проверяется их выводимость из аксиом. Возможно что вы имели ввиду тот факт, что фиксируется некоторый набор аксиом для описания натуральных чисел в рамках логики первого порядка? И что теорема Гёделя утверждает, что его нельзя зафиксировать, чтобы получить полную и непротиворечивую теорию? Вообще это мягко говоря не так. Теоремы Гёделя работают только с аксиоматикой Пеано и только в логике первого порядка.
Контр-пример: арифметика Пресбургера для натуральных чисел. Для неё доказана полнота и непротиворечивость средствами самой теории. И никакая теорема Гёделя в этой теории не действует.
Контри-пример 2: возьмите логику высшего порядка и получите непротиворечивую теорию даже с аксиомами Пеано.