2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14 ... 22  След.
 
 Re: Совместные чтения
Сообщение21.10.2016, 00:10 
Заслуженный участник
Аватара пользователя


08/11/11
5940
У Вавилова есть ещё одна книжка "Не совсем наивная линейная алгебра". Какое-то время назад я её пытался найти и не смог. А теперь она легко появляется, если набрать в Google. Ссылку давать не буду, и сам книгу ещё не прочитал.

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение21.10.2016, 00:21 
Заслуженный участник
Аватара пользователя


20/08/14
8506
Правильно ли я понимаю, что его "Не совсем наивная теория множеств" еще не закончена? По крайней мере, тот текст, что я нагуглил, внезапно обрывается.

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение21.10.2016, 00:53 
Заслуженный участник
Аватара пользователя


08/11/11
5940
По-моему, все эти книги ещё не закончены.

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение21.10.2016, 01:12 
Заслуженный участник
Аватара пользователя


20/08/14
8506
Вавилов нигде не проговаривался, когда планирует закончить? Всё-таки на титульном листе "Не совсем наивной теории множеств" стоит 2008 г., времени прошло порядочно.

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение21.10.2016, 09:42 
Заслуженный участник
Аватара пользователя


03/06/08
2319
МО
Открыл ("Не совсем наивную линейную алгебру", в смысле).
С ходу нетривиальная (для меня) мысль, что изучать линейную алгебру начинающим проще с модулей.
Заинтригован. Особенно интересно, как начинающий будет вникать в понятие размерности (типа, предлагается на втором занятии рассказать про нетеровость?).

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение21.10.2016, 10:18 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
На мой взгляд, опусы Вавилова не предназначены для систематического изучения тех наук, про которые они написаны. Это как забугорные конфетки в зазывно-ярких обертках, а под оберткой - что-то непонятно-синтетическое.

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение21.10.2016, 21:39 
Заслуженный участник
Аватара пользователя


30/01/06
72407
g______d в сообщении #1161507 писал(а):
У Вавилова есть ещё одна книжка "Не совсем наивная линейная алгебра".

Ох, спасибо! Mengenlehre-то я прочитал, а вот группы и кольца пока не пошли.

-- 21.10.2016 22:30:56 --

Арифметика коммутативных колец
Конечные поля
Конкретная теория групп
Алгебраические операции
Числа и многочлены
Не совсем линейная теория множеств
Многочлены от нескольких переменных

Это правда всё от Вавилова есть?

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение24.10.2016, 18:00 
Заслуженный участник
Аватара пользователя


30/01/06
72407
g______d в сообщении #1161507 писал(а):
У Вавилова есть ещё одна книжка "Не совсем наивная линейная алгебра".

Я нашёл только "часть 1" (128 страниц). Полистал. Наконец-то нашёл пояснения обозначениям $\diamondsuit,\heartsuit,\spadesuit,\clubsuit.$

Но главное для меня сокровище - цитата (на стр. 91):
    Цитата:
    Смысл математического понятия далеко не содержится в его формальном определении. Не меньше — скорее больше — дает набор основных примеров, являющихся для математика одновременно и мотивировкой, и содержательным определением, и смыслом понятия.
    Игорь Шафаревич, Основные понятия алгебры. 1999.

Ведь я на этом форуме долго, неоднократно и безуспешно дискутировал с людьми, давившими на меня авторитетом математика, и при этом настаивавшими, что для математика формальное определение и есть смысл понятия, и никакого больше смысла быть не может "по определению".

Заодно, внезапно ярко высветился тот факт, что книги Вавилова - большие собрания примеров для конструкций и фактов. Возможно, в этом их главная педагогическая ценность.

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение24.10.2016, 18:42 
Заслуженный участник


27/04/09
28128

(Оффтоп)

Видимо, слово «смысл» понималось по-разному. В каком-то смысле определения может быть достаточно — набор аксиом теории, в том числе определяющих какие-то значочки из её алфавита, полностью определяет множество её теорем по определению. Нельзя же сказать, что в таком смысле совсем нет смысла. С другой стороны, что человек, чтобы быть в теории как рыба в воде, нуждается в кипе частных случаев, примеров, контрпримеров и ещё куче вещей, вроде как тоже очевидно. Более того, если начать проводить квазифилософские аналогии, это прямо отражает ситуацию с определяющими аксиомами: смысл значка определяется тем, в каких контекстах он появляется (а в каких не появляется) в аксиомах. (То, что одна теория может иметь несколько в каком-то смысле «существенно разных» аксиоматизаций, тоже параллелится: достаточные множества примеров тоже могут быть в каком-то смысле «существенно разными».)

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение24.10.2016, 19:52 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Мне поступила ЛС:
    Цитата:
    Цитата:
    Наконец-то нашёл пояснения обозначениям $\diamondsuit,\heartsuit,\spadesuit,\clubsuit.$

    Пожалуйста, добавьте и эту информацию в пост хотя бы в виде указателя на страницу. Я книгу открывал аж несколько раз и ничего не понял, хочу понять хотя бы только обозначения.
Страницы 25-26:
    Цитата:
    3. Архитектоника: вертикальное членение. В соответствии с этим изложение (в данной книге) эксплицитно разделено на пять маркированных четко различающихся уровней:
      • для инженеров $\diamondsuit,$
      • для физиков $\heartsuit,$
      • для математиков $\spadesuit,$
      • для алгебраистов $\clubsuit,$
      • для любознательных школьников и пенсионеров $\maltese$
    Маркировка первых четырех уровней отвечает рангам мастей в скате. Начинающий должен иметь в виду, что внутри любого параграфа ему могут встретиться фрагменты или комментарии профессионального и/или любительского уровня, которые никак отдельно не выделяются! Если при первом чтении ей непонятно что-то напечатанное мелким шрифтом, это нормально, нужно просто двигаться дальше, понимание придет: the focus is on going forward, because mathematics is only learned in hindsight.
    Вопросы, маркированные $\diamondsuit$ и $\heartsuit,$ обычно входят в общие курсы алгебры, читаемые в СПбГУ прикладным математикам, при этом вопросы с меткой $\diamondsuit$ рассказываются детально и их знание необходимо для получения удовлетворительной оценки, в то время как вопросы с меткой $\heartsuit$ часто освещаются менее подробно или только упоминаются. Студенты по отделению чистой математики, которым читается более продвинутый курс алгебры, должны полностью владеть уровнем $\heartsuit$ и большинством тем с меткой $\spadesuit,$ хотя точный список может от года к году слегка меняться. Наконец, темы с меткой $\clubsuit$ обычно включаются только в специальные курсы для студентов, специализирующихся по кафедре алгебры и теории чисел.
    В действительности различие между $\diamondsuit$ и $\heartsuit$ не столько в уровне сложности, сколько в уровне императивности. Некоторые темы маркированы $\heartsuit$ не потому, что они труднее или менее важны, а только потому, что они меньше связаны с другими темами в этом курсе или других курсах, читаемых на математико-механическом факультете. То же самое относится к $\spadesuit$ и $\clubsuit,$ но, конечно, между $\diamondsuit$ и $\heartsuit$ с одной стороны и $\spadesuit$ и $\clubsuit$ с другой, в целом происходит зримый рост требований к зрелости, мотивации и/или настойчивости потенциального читателя.

    5. Рекомендации по чтению. Новичку, чтобы начать ориентироваться в предмете и увидеть хотя бы часть внутренних связей, нужно прочесть книгу дважды.
      • Первый раз так:
        о прочесть все параграфы всех глав, помеченные $\diamondsuit,$
        о вернуться к началу и прочесть все параграфы всех глав, помеченные $\heartsuit,$
        о вернуться к началу и прочесть все параграфы всех глав, помеченные $\spadesuit.$
      • Второй раз не менее, чем через 3 4 месяца, лучше через 6-8 месяцев после первого чтения, когда многие детали уже забылись, но общее впечатление еще осталось можно читать подряд, включая формулировки, но пропуская доказательства в параграфах, помеченных $\clubsuit.$


-- 24.10.2016 19:55:24 --

arseniiv

(Оффтоп)

arseniiv в сообщении #1162605 писал(а):
Видимо, слово «смысл» понималось по-разному.

Да. Подразумевается не смысл понятия "производная от функции $f\colon\mathbb{R}\to\mathbb{R}$ в точке $x_0\in\mathbb{R}$", а смысл понятия "производная". Так что то, что вы пишете, попросту мимо. Хотя вы очень хорошо воспроизвели слова, которых я уже наслышался по горло.

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение24.10.2016, 21:19 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Munin в сообщении #1162590 писал(а):
Ведь я на этом форуме долго, неоднократно и безуспешно дискутировал с людьми, давившими на меня авторитетом математика, и при этом настаивавшими, что для математика формальное определение и есть смысл понятия, и никакого больше смысла быть не может "по определению".


Забавно, что в подобных дискуссиях обычно подразумеваются как раз понятия, которые либо обе стороны и так должны были знать на формальном строгом уровне (если учились в университете).

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение24.10.2016, 21:36 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Вы, видимо, хотели сказать "если учились на математической специальности". И я, например, под это не подпадаю.

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение24.10.2016, 21:56 
Заслуженный участник


27/04/09
28128

(Оффтоп)

Munin в сообщении #1162642 писал(а):
Так что то, что вы пишете, попросту мимо.
Почему мимо, когда я начал с того, что привёл обе точки зрения? Вот же упомянутая вами:
arseniiv в сообщении #1162605 писал(а):
С другой стороны, что человек, чтобы быть в теории как рыба в воде, нуждается в кипе частных случаев, примеров, контрпримеров и ещё куче вещей, вроде как тоже очевидно.

Призна́ю, это очевидно не всегда. Мне в школе всё время верилось, что всегда можно всё вывести из первых принципов, не пройдя вовремя мимо удачно накопленных человечеством примеров и теорем. Казалось, их слишком много, чтобы запомнить. Хотя я уже тогда, кажется, догадывался, что голова так (загрузил аксиомы и сразу в кругосветное путешествие) не работает.

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение24.10.2016, 22:04 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Munin в сообщении #1162693 писал(а):
Вы, видимо, хотели сказать "если учились на математической специальности". И я, например, под это не подпадаю.


Я думаю, вы недооцениваете образование на физических специальностях (которое в России получили большинство в данный момент работающих физиков).

 Профиль  
                  
 
 Re: Совместные чтения
Сообщение24.10.2016, 22:35 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб

(Оффтоп)

g______d в сообщении #1162713 писал(а):
Я думаю, вы недооцениваете образование на физических специальностях (которое в России получили большинство в данный момент работающих физиков).
Оффтоп, конечно, но не удержусь. Боюсь, что "физическая математика" и "математическая математика" у физиков в процессе обучения довольно быстро вступают в противоречие. Покажу на себе, хотя не рекомендуется. Не далее как на днях рассказывал детям про электростатику, и быстренько получил, что фурье-образ поля точечного заряда (функция Грина уравнения Пуассона) есть $\frac{4\pi}{k^2}$, откуда лихо получил (элементарными операциями без всяких там $\delta$-функций ;), что $\varphi(r)=\frac{1}{r}$. Дети (2-й курс) несколько прибалдели, поскольку им недавно объяснили, что интеграл по всему пространству $\int \frac{e^{-ikx}}{k^2}d^3k$ расходится со страшной силой. Однако, то что надо было понять про физику, как науку о решении задач, они поняли, а про обобщенные функции в этом месте рассказывать не хотелось, поскольку долго, занудно и непонятно будет. (Сейчас, однако, устыдился, и следующий раз попробую это хоть как-то пояснить.)

Я это к тому, что высокий стандарт математической строгости не поддерживается даже лучшими учебниками по теор. физике, поэтому у выпускников даже теоретических физических кафедр довольно вольное представление о формальном строгом уровне.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 324 ]  На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14 ... 22  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: tolstopuz


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group