2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение17.10.2016, 17:28 


23/02/12
3146
При ортогональном преобразовании (вращении) количество решений алгебраического уравнения внутри гиперсферы сохраняется ($|det (A)|=1$).

При последующем преобразовании деформации ($x''_i=k_ix'_i,(i=1,...,n)$), если $|k_i| \geq 1$, то плотность решений уравнения не увеличивается. Если при этом хотя бы для одного $j$ выполняется $|k_j|>1$, то плотность решений уравнения уменьшается в $|det (A)|$ , где $A$ - матрица преобразования, так как происходит растяжение по каждой оси в $|k_i|$ раз.

Поясним это на примере.

Рассмотрим следующее уравнение Туэ:
$x_1^2+2x_1x_2+x_2^2-1=0$. (184)

Матрица квадратичной формы уравнения (184) имеет вид: $\left(
 \begin {array} {ccc}
1 & 1\\
1 & 1\\
\end {array}
\right)$.

Продолжение следует

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение18.10.2016, 18:19 


23/02/12
3146
Уравнение (184) можно записать в виде:
$(x_1+x_2)^2-1=(x_1+x_2+1)(x_1+x_2-1)=0$. (185)

Поэтому уравнение (184) имеет целочисленные решения - две параллельные прямые:
$x_2=-x_1-1; x_2=-x_1+1$.

Расстояние между этими параллельными прямыми равно $\sqrt {2}$.

Определим все целые решения уравнения (184) в квадрате со стороной $[-2,2]$:
$(-2,1);(-1,2);(-1,0);(0,1),(0,-1);(1,0);(2,-1);(2,-2)$. Всего их их восемь.

Запишем характеристическое уравнение для матрицы квадратичной формы уравнения (184):
$(1-a)^2-1=(2-a)a=0$.

Поэтому характеристические числа равны:
$a_1=2,a_2=0$.

Следовательно, после ортогонального нецелочисленного преобразования координат (поворот на $\pi/4$) с матрицей C равной:
$\left(
 \begin {array} {ccc}
\sqrt {2}/2 & -\sqrt {2}/2\\
\sqrt {2}/2 & \sqrt {2}/2\\
\end {array}
\right)$
и последующей гомотетии с коэффициентом $\sqrt {2}$, мы получаем результирующее целочисленное преобразование с матрицей $C_d$ равной:
$\left(
 \begin {array} {ccc}
1 & -1\\
1 &  1\\
\end {array}
\right)$
с $|det(C_d)|=2$.

Поэтому результирующее целочисленное преобразование соответствуют уравнениям:
$x'_1=x_1-x_2, x'_2=x_1+x_2$ или $x_1=0,5x'_1+0,5x'_2;x_2=-0,5x'_1+0,5x'_2$. (186)

Подставим (186) в (185) и получим уравнение в новых координатах:
$(x_1+x_2)^2-1=(x_1+x_2+1)(x_1+x_2-1)=(x'_2+1)(x'_2-1)=(x'_2)^2-1=0$. (187)

Уравнение (187) имеет целочисленные решения две параллельные прямые:
$x'_2=-1,x'_2=1$.

Расстояние между этими параллельными прямыми равно $2$.

По сравнению с расстоянием между двумя параллельными прямыми, целочисленными решениями уравнения (184), расстояние увеличилось на коэффициент гомотетии, что соответствует (183).

Восемь указанных целочисленных решений уравнения (184) в квадрате $[-2,2]$ при целочисленном результирующем преобразовании перешли в следующие целочисленные решения уравнения (187) в аналогичном квадрате: $(-1,-1);(-1,1);(1,1);(1,-1)$. Таким образом, их стало четыре.

Следовательно, их количество уменьшилось в 2 раза, т.е на $|det(C_d)|$, что соответствует сказанному выше.

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение20.10.2016, 17:10 


23/02/12
3146
Остальные целочисленные решения уравнения (184), находящиеся в квадрате со стороной $[-2,2]$, при результирующем преобразовании деформации с матрицей $C_d$ выходят за пределы данного квадрата.

С другой стороны в целые решения уравнения (187) добавляются шесть решений: $(-2,1);(0,1);(2,1);(-2,-1);(0,-1);(2,-1)$, которые находятся на прямых $x'_2=-1,x'_2=1$ в квадрате со стороной $[-2,2]$. Эти решения получаются при преобразовании нецелых решений уравнения (184), которые находятся на прямых $x_2=-x_1+1,x_2=-x_1-1$ в квадрате со стороной $[-2,2]$. Поэтому количество целых решений уравнения (187) по сравнению с уравнением (184) в квадрате со стороной $[-2,2]$ выросло c 8 до 10.

Таким образом, в общем случае случае, количество целых решений алгебраического диофантова уравнения в гиперкубе при указанном преобразовании к диагональному виду может даже возрастать.

Однако, если недиагональное уравнение имело только конечное число целых решений в гиперкубе со стороной $[-N,N]$, то после указанного преобразования диагональное уравнение будет иметь также конечное число целых решений (в частном случае вообще не иметь целых решений) в таком же гиперкубе, т.е. сохраняется порядок количества целых решений диофантова алгебраического уравнения- $O(1)$ в гиперкубе со стороной $[-N,N]$.

Если недиагональное уравнение имело бесконечное число целых решений в гиперкубе со стороной $[-N,N]$, находящихся на прямой (прямых), то после указанного преобразования диагональное уравнение будет иметь также бесконечное число целых решений в таком же гиперкубе, находящихся на прямой (прямых), т.е. сохраняется порядок количества целых решений диофантова алгебраического уравнения- $O(N)$ в гиперкубе со стороной $[-N,N]$.

Если недиагональное уравнение имело бесконечное число целых решений в гиперкубе со стороной $[-N,N]$, находящихся на плоскости (плоскостях), то после указанного преобразования диагональное уравнение будет иметь также бесконечное число целых решений в таком же гиперкубе, находящихся на плоскости (плоскостях), т.е. сохраняется порядок количества целых решений диофантова алгебраического уравнения- $O(N^2)$ в гиперкубе со стороной $[-N,N]$.

Если недиагональное уравнение имело бесконечное число целых решений в гиперкубе со стороной $[-N,N]$, находящихся на $r$ -мерной плоскости (плоскостях), то после указанного преобразования диагональное уравнение будет иметь также бесконечное число целых решений в таком же гиперкубе, находящихся на $r$ -мерной плоскости (плоскостях), т.е. сохраняется порядок количества целых решений диофантова алгебраического уравнения- $O(N^{r-1})$ в гиперкубе со стороной $[-N,N]$.

Таким образом, сохраняется асимптотика целых решений алгебраического диофантова уравнении при преобразовании его к диагональному виду с помощью указанного результирующего преобразования.

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение20.10.2016, 23:51 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва

(Оффтоп)

vicvolf в сообщении #1161403 писал(а):
Таким образом, сохраняется асимптотика целых решений алгебраического диофантова уравнении при преобразовании его к диагональному виду с помощью указанного результирующего преобразования.

Еще можно проверять таблицу умножения с помощью многократного сложения одинаковых групп счетных палочек и тоже каждый раз удовлетворенно заключать: "Надо же, до чего дошла наука, результат совпал с написанным на задней стороне тетрадки!"
Это тоже будет очень научно и дискуссионно, примерно как и эта "научная тема". :D

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение21.10.2016, 16:13 


23/02/12
3146
vicvolf в сообщении #1160866 писал(а):
По сравнению с расстоянием между двумя параллельными прямыми, целочисленными решениями уравнения (184), расстояние увеличилось на коэффициент гомотетии, что соответствует (183).

Естественно возникает вопрос, как изменяется расстояние между целыми решениями недиагонального уравнения при переходе с помощью общего результирующего преобразования к диагональному уравнению, когда его преобразование деформации не является гомотетией.

Так как плотность целых решений алгебраического диофантова уравнения при данном результирующем преобразовании уменьшается в $|det(C_d)|$ раз ($C_d$ - матрица результирующего преобразования), то количество целых решений в $n$ - мерном гиперкубе также уменьшается в такое же число раз.

Следовательно, расстояние между целыми точками решений недиагонального уравнения при переходе с помощью общего результирующего преобразования к диагональному уравнению в данном гиперкубе увеличивается в $(|det(C_d)|)^{1/n}}$ раз.

Напомним, что для данного результирующего преобразования $|det(C_d)|>1$.

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение24.10.2016, 17:44 


23/02/12
3146
Немного о терминологии.

Обычно под ортогональным преобразованием понимается аффинное преобразование, сохраняющее перпендикулярность базисных векторов и величину их длин.

Введем понятие обобщенного ортогонального преобразования, которое сохраняет только перпендикулярность базисных векторов.

Тогда рассмотренное ранее результирующее преобразование, которое преобразует алгебраическое уравнение к диагональному виду, является целочисленным обобщенным ортогональным преобразованием (в смысле указанного определения).

В отличии от ортогонального преобразования, которое относится к преобразованию движения, обобщенное ортогональное преобразование также содержит растяжение базисных векторов.

В рассмотренном результирующем преобразование производится растяжение $i$-ого базисного вектора в $k_i$ раз.

Вернемся к случаю алгебраического уравнения от двух переменных $(n=2)$.

Для данного случая матрицу положительно ориентированного поворота на угол $a$ можно записать в виде:
$\left(
 \begin {array} {ccc}
1/\sqrt {(1+tg^2(a)} & -tg(a)/\sqrt {(1+tg^2(a)} \\
tg(a)/\sqrt {(1+tg^2(a)}  &  1/\sqrt {(1+tg^2(a)} \\
\end {array}
\right)$(188)

После данного поворота (188) выполним преобразование гомотетии с коэффициетом $\sqrt {(1+tg^2(a)}$.

Таким образом, получим следующую матрицу результирующего преобразования $C_d$:
$\left(
 \begin {array} {ccc}
1 & -tg(a)\\
tg(a) &  1 \\
\end {array}
\right)(189)$

Преобразование с матрицей $C_d$ является целочисленным, если $tg(a)$ является целым числом.

Если $tg(a)$ является рациональной дробью $p/q$, то для получения целочисленного результирующего преобразования необходимо выполнить дополнительную гомотетию с коэффициентом $q$.

Если $tg(a)$ является иррациональным, то найти целочисленное обобщенное ортогональное преобразование, приводящее алгебраическое диофантово уравнение к диагональному виду, нельзя.

Немного позже поясню это на примере.

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение28.10.2016, 17:49 


23/02/12
3146
Примечание

Преобразование (188) справедливо, если $a$ не равно $\pi/2, -\pi/2$.
Эти случаи для нас не интересны, так как матрицы поворота на эти углы уже являются целочисленными.

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение01.11.2016, 17:53 


23/02/12
3146
Теперь определим, в каких случаях $tg(a)$ является целым числом или рациональной дробью.

Углы поворота $a_1,a_2$, приводящие уравнение:
$a_{11}x_1^2+2a_{12}x_1x_2+a_{22}x_2^2=0$ (190)
к диагональному виду определяется из соотношений:
$tg(a_1)=a_{22}-a_{11}/2a_{12}+\sqrt{(a_{22}-a_{11})^2/4a_{12}^2+1}$,
$tg(a_2)=a_{22}-a_{11}/2a_{12}-\sqrt{(a_{22}-a_{11})^2/4a_{12}^2+1}$. (191)

На основании (191), для того, чтобы $tg(a)$ являлся целым числом или рациональной дробью требуется, чтобы выполнялось соотношение:
$1+(a_{22}-a_{11})^2/4a_{12}^2=p^2/q^2$, (192)
где $p/q$ -рациональная дробь. Естественно $a_{12}$ не равен $0$, так как иначе уравнение (190) уже имело бы диагональный вид.

Уравнение (192) эквивалентно диофантову уравнению:
$(a_{22}-a_{11})^2+(2a_{12})^2=(2a_{12}p/q)^2$, (193)
которое является уравнением Ферма второй степени.

Поэтому уравнение (193) имеет следующие решения:
$a_{22}-a_{11}=(u^2-v^2)l;a_{12}=uvl;2a_{12}p/q=(u^2+v^2)l$, (194)
где $u,v,l$ - натуральные числа и $u>v$.

На основании (194) минимальное решение уравнения (193):
$a_{11}=1,a_{12}=2,a_{22}=4$,
которое соответствует уравнению (190):
$x_1^2+4x_2^2+4x_1x_2=0$. (195)

На основании формул (191) для уравнения (195) получаем:
$tg(a_1)=2;tg(a_2)=-1/2$. (196)

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение07.11.2016, 18:17 


23/02/12
3146
На основании (189) для $a_1$ получаем целочисленное преобразование:
$C_{d_1}$=$\left(
 \begin {array} {ccc}
1 & -2\\
2 &  1 \\
\end {array}
\right).(197)$

Коэффициент гомотетии у данного результирующего преобразования равен:
$\sqrt {1+tg(a_1)^2}=\sqrt {5}$.(198)

Аналогично для $a_2$ получаем нецелочисленное преобразование:
$C_{d_2}$=$\left(
 \begin {array} {ccc}
1 & 1/2\\
-1/2 &  1 \\
\end {array}
\right).(199)$

Для получения целочисленного преобразования из (199) требуется дополнительное преобразование гомотетии с $k=2$.
В этом случае результирующее целочисленное преобразование примет вид:
$C_{d_3}$=$\left(
 \begin {array} {ccc}
1 & 1\\
-1 &  1 \\
\end {array}
\right).(200)$

Коэффициент гомотетии для результирующего целочисленного преобразования (200) определяется следующим образом:
$k \sqrt {1+tg(a_2)^2}=2 \sqrt {1+(1/2)^2}=\sqrt {5}$,(201)
что соответствует (198).

Мы рассмотрели пример, когда $tg(a)$ является целым числом, либо рациональной дробью.

Далее рассмотрим пример, когда $tg(a)$ является иррациональным.

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение08.11.2016, 12:41 


23/02/12
3146
Устраню неточность в формуле (200):
$C_{d_3}$=$\left(
 \begin {array} {ccc}
2 & 1\\
-1 &  2 \\
\end {array}
\right).(200)$

Учитывая, что при гомотетии все элементы матрицы преобразования умножаются на коэффициент гомотетии $k$, то определитель преобразования умножается на $k^n$, где $n$ - число переменных.

Следовательно, если результирующее преобразование $C_d$ включает в себя гомотетию с коэффициентом $k$ и учитывая, что определитель ортогонального преобразования равен 1, то модуль определителя результирующего преобразования равен $|det(C_d)|= k^n$ и коэффициент гомотетии равен:
$k=(|det(C_d)|)^{1/n}$. (202)

Так как в приведенном выше примере $det(C_{d_1})=det(C_{d_3})=5$, то на основании (202):
$k=(|det(C_d)|)^{1/2}=\sqrt {5}$, что соответствует (198) и (201).

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение14.11.2016, 16:39 


23/02/12
3146
Теперь рассмотрим пример, когда $tg(a)$ является иррациональным. Такие случаи значительно чаще встречаются в практике диофантовых уравнений.
Как уже говорилось выше, в этих случаях нельзя найти обобщенное ортогональное преобразование, которое привело бы уравнение к диагональному виду.

Приведу достаточно простой пример такого диофантова уравнения:
$x_1^2+x_1x_2=0$. (203)

Для уравнения (203) на основании (191) определим $tg(a_1)=-1-\sqrt {2}, tg(a_2)=-1+\sqrt {2}$. (204)

На основании (204) получаем два нецелочисленных ортогональных преобразования:
$C_{1}$=$\left(
 \begin {array} {ccc}
1 & 1+\sqrt {2}\\
-1-\sqrt {2},  &  1 \\
\end {array}
\right)$
и
$C_{2}$=$\left(
 \begin {array} {ccc}
1 & 1-\sqrt {2}\\
 -1+\sqrt {2},  &  1 \\
\end {array}
\right)$, (205)
которые нельзя с помощью преобразования растяжения привести к целочисленному виду.

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение18.11.2016, 18:20 


23/02/12
3146
Утверждение 2

Пусть матрица квадратичной формы алгебраического диофантова уравнения второй степени от $n$ переменных имеет собственные вектора с целочисленными координатами соответственно:
$a_1=(a_{11},...,a_{1n}),...,a_n=(a_{n1},...,a_{nn})$, (206)
тогда целочисленное обобщенное ортогональное преобразование, приводящее указанное алгебраическое диофантово уравнение к диагональному виду, имеет вид:
$C$=$\left( \begin {array} {ccc}a_{11} & ...&a_{1n}\\... \\a_{n1} & ...&a_{nn}\\\end {array}\right)$. (207)

Доказательство

Если собственные вектора матрицы квадратичной формы имеют координаты (206), то длины соответствующих собственных векторов будут:
$|a_1|=\sqrt {a_{11}^2+...+a_{1n}^2},...,|a_n|=\sqrt {a_{n1}^2+...+a_{nn}^2}$. (208)

На основании (208) вектора нового ортонормированного базиса будут иметь координаты:
$a'_1=(a_{11}/\sqrt {a_{11}^2+...+a_{1n}^2},...,a_{1n}/\sqrt {a_{1n}^2+...+a_{1n}^2})$,
...,
$a'_n=(a_{n1}/\sqrt {a_{11}^2+...+a_{1n}^2},...,a_{nn}/\sqrt {a_{1n}^2+...+a_{1n}^2})$. (209)

На основании (209) матрица ортогонального преобразования будет иметь вид:
$S$=$\left( \begin {array} {ccc}a_{11}/\sqrt {a_{11}^2+...+a_{1n}^2} & ...& a_{1n}/\sqrt {a_{1n}^2+...+a_{1n}^2})\\... \\a_{n1}/\sqrt {a_{11}^2+...+a_{1n}^2} & ...& a_{nn}/\sqrt {a_{1n}^2+...+a_{1n}^2})\\\end {array}\right)$. (210)

Ортогональное преобразование (210) приводит исходное алгебраическое уравнение к диагональному виду, но в общем случае не является целочисленным, так как в знаменателе элементов матрицы могут стоят либо иррациональные числа, либо целые числа, которые не делят числитель нацело.

Сделаем дополнительно преобразование деформации, которое сохраняет ортогональность базисных векторов:
$x'_1=k_1x''_1,...,x'_n=k_nx''_n$, (211)
где $k_1=\sqrt {a_{11}^2+...+a_{1n}^2},...,k_n=\sqrt {a_{n1}^2+...+a_{nn}^2}$.

После дополнительного преобразования (211) получим результирующее обобщенное ортогональное преобразование:
$C$=$\left( \begin {array} {ccc}a_{11} & ...&a_{1n}\\... \\a_{n1} & ...&a_{nn}\\\end {array}\right)$,
которое на основании условия утверждения имеет целочисленные коэффициенты.

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение24.11.2016, 14:28 


23/02/12
3146
Небольшое пояснение к утверждению 2.

Известно, что, в общем случае, алгебраическое диофантово уравнение второго порядка от $n$ переменных, с целыми коэффициентами:

$F(x_1,...,x_2)=\sum_{i,j=1}^{n} {a_{ij}x_ix_j+2\sum_{i=1}^{n}x_i+a_0=0$ (212)

с помощью преобразования переноса начала координат:

$x_1=x'_1+x_{10},...,x_n=x'_n+x_{n0}$. (213)

может быть представлено в виде:

- для центрального случая:

$F(x'_1,...,x'_n)=\sum_{i,j+1}^n {a_{ij}x'_ix'_j+a'_0=0$, (214)

- для нецентрального случая:

$F(x'_1,...,x'_n)=\sum_{i,j+1}^n {a_{ij}x'_ix'_j+a'_kx'_k=0$, (215)

где $a'_0=F(x_{10},...x_{n0})$, а $a'_k$ - коэффициент при переменной $x'_k(1 \leq k \leq n)$.

Если преобразование переноса начала координат (213) является целочисленным, то в силу целочисленности функции $F(x_1,...,x_n)$ в уравнении (212), коэффициенты $a'_0,a'_k$ будут также целочисленными, а целые коэффициенты квадратичной формы $a_{ij}$ уравнения (212) при переносе начала координат вообще не меняются.

Предполагается, что существует целочисленное преобразование переноса начала координат, которое приводит алгебраическое диофантово уравнение второго порядка в утверждении 2 к уравнению (214) или (215) с целыми коэффициентами.

Поясним это на примере.

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение28.11.2016, 17:38 


23/02/12
3146
Не снижая общности формулу (215) можно записать в виде:
$F(x'_1,...,x'_n)=\sum_{i,j+1}^{n-1} {a_{ij}x'_ix'_j+a'_nx'_n=0$. (215)

А теперь рассмотрим поясняющий пример.

Необходимо определить количество целых решений диофантова уравнения:
$(x_1)^2+5(x_2)^2+(x_3)^2+2x_1x_2+6x_1x_3+2x_2x_3+8x_1+20x_2+16=0$.(216)

Матрица квадратичной формы уравнения (216) имеет вид:
$A$ = $\left(
 \begin {array} {ccc} 
1 & 2 & 3\\
1 & 5 & 1\\
3 & 1 & 1\\
\end {array}
\right)$,

$det(A)=-36$ (не равен 0).

Следовательно, уравнение (216) соответствует центральной поверхности.

Найдем координаты ее центра из системы уравнений:
$x_{10}+x_{20}+3x_{30}=4, x_{10}+5x_{20}+x_{30}=10,3x_{10}+x_{20}+x_{30}=0$. (217)

Так как детерминант системы (217) отличен от 0, то система имеет единственное решение:
$x_{10}=-1,x_{20}=2,x_{30}=1$.

Следовательно, возможен целочисленный перенос начала новой системы координат в центр поверхности, поэтому для уравнения (216) выполняется утверждение 2.

Введем новые координаты и перенесем центр поверхности в начало новой системы координат:
$x_1=x'_1+1,x_2=x'_2-2,x_3=x'_3-1$. (218)

Подставим новые координаты (218) в (216) и получим уравнение:
$(x'_1+1)^2+5(x'_2-2)^2+(x'_3-1)^2+2(x'_1+1)(x'_2-2)+$ $6(x'_1+1)(x'_3-1)+2(x'_2-2)(x'_3-1)+8(x'_1+1)+20(x'_2-2)+16$. (219)

Приведя подобные члены в (219), получим уравнение в новых координатах:
$(x'_1)^2+5(x'_2)^2+(x'_3)^2+2x'_1x'_2+6x'_1x'_3+2x'_2x'_3=0$. (220)

 Профиль  
                  
 
 Re: Оценка количества решений диофан. уравнений Круговым методом
Сообщение30.11.2016, 17:49 


23/02/12
3146
Уточним формулу (215):
$F(x'_1,...,x'_n)=\sum_{i,j+1}^{n-1} {a_{ij}x'_ix'_j+2a'_nx'_n=0$. (215)

Уточним формулировку утверждения 2.

Утверждение 2

Пусть матрица квадратичной формы алгебраического диофантова уравнения второй степени от $n$ переменных имеет собственные вектора с целочисленными координатами соответственно:
$a_1=(a_{11},...,a_{1n}),...,a_n=(a_{n1},...,a_{nn})$, (206)
тогда целочисленное обобщенное ортогональное преобразование, приводящее указанное алгебраическое диофантово уравнение к диагональному виду, имеет вид:
$C$=$\left( \begin {array} {ccc}a_{11} & ...&a_{n1}\\... \\a_{1n} & ...&a_{nn}\\\end {array}\right)$. (207)

Теперь продолжим решение примера.

Найдем собственные значения матрицы квадратичной формы уравнения (220):
$\left|
 \begin {array} {ccc} 
1-t & 2 & 3\\
1 & 5-t & 1\\
3 & 1 & 1-t\\
\end {array}
\right|$ $=-t^3+7t^2-36=0$. (221)

На основании характеристического уравнения (221) получаем следующие собственные значения:
$t_1=3,t_2=6,t_3=-2$.

Теперь найдем собственный вектор для собственного значения $t_1=3$, решая систему уравнений:
$-2a_1+a_2+3a_3=0,a_1+2a_2+a_3=0,3a_1+a_2-2a_3=0$. (222)

Система линейных уравнений (222) имеет решение:
$a_1=1,a_2=-1,a_3=1$,

т.е. в качестве собственного вектора возьмем целочисленный вектор:
$a$ = $\left(
 \begin {array} {ccc} 
1\\
-1\\
1 \\
\end {array}
\right)$.

Найдем собственный вектор для собственного значения $t_2=6$, решая систему уравнений:
$-5b_1+b_2+3b_3=0,b_1-b_2+b_3=0,3b_1+b_2-5b_3=0$. (223)

Система линейных уравнений (223) имеет решение:
$b_1=1,b_2=2,b_3=1$,

т.е. в качестве собственного вектора возьмем целочисленный вектор:
$b$ = $\left(
 \begin {array} {ccc} 
1\\
2\\
1 \\
\end {array}
\right)$.

Найдем собственный вектор для собственного значения $t_3=-2$, решая систему уравнений:
$3c_1_1+c_2+3c_3=0,b_1+7c_2+c_3=0,3c_1+c_2-3c_3=0$. (224)

Система линейных уравнений (224) имеет решение:
$b_1=-1,b_2=0,b_3=1$,

т.е. в качестве собственного вектора возьмем целочисленный вектор:
$c$ = $\left(
 \begin {array} {ccc} 
1\\
2\\
1 \\
\end {array}
\right)$.

На основании утверждения 2 для данного примера целочисленное обобщенное ортогональное преобразование, приводящее уравнение (220) к диагональному виду, имеет вид:

$C$ $=\left(
 \begin {array} {ccc} 
1 & 1 & -1\\
-1 & 2 & 0\\
1 & 1 & 1\\
\end {array}
\right)$.(225)

На основании (225) значение $\det(C)=6$ (не равно 0), поэтому преобразование $C$ является невырожденным.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 94 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: worm2


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group