Это не страшно, хотя бы знать буду, что квант, это не просто порция энергии
Да! Совсем не "просто порция энергии"! Квант - это отсылка к тому, что надо переключиться на гораздо более сложную картину мира.
При этом, в физике не принято говорить просто "квант". Принять говорить "квант чего-то". И в зависимости от этого "чего-то", у этого слова получается несколько разных смыслов, развившихся исторически:
-
квант энергии, или какой-то другой
физической величины - это просто скачок величины между разными состояниями, даже если в классической физике эта величина может изменяться непрерывно;
-
квант излучения,
света, или чаще всего - какого-либо
физического поля - это некоторое отдельное состояние физической
системы, возникающее при переходе от простого классического её описания, к более сложному квантовому. Такой переход называется
квантованием. Чаще всего такие отдельные состояния вообще не называются "квантами", а называются, например, состояниями или уровнями (ещё иногда орбиталями или оболочками, есть и несколько более специальных терминов). Но для поля, прежде всего для электромагнитного, закрепилось ещё и название "квант поля". И очень важным и удивительным результатом стало то, что такие отдельные состояния - ведут себя во многом как отдельные частицы.
И даже в таком смысле, словосочетание "квант поля" применяется довольно узко в теоретической физике. В большинстве случаев, лучше говорить "фотон".
и если я правильно понял, у него еще есть "структура": как бы кусочек волны длинной в некоторое количество периодов (раз это можно вычислить).
Да. Эта "структура" - по сути аналогична волновой функции частицы.
Во времени? Без теории относительности Эйнштейна, тогда здесь не обошлось.
И во времени, и в пространстве, но теория относительности тут ни при чём. Просто представьте себе математическую функцию Гаусса

- она имеет вид "колокольчика" (часто её так и называют, bell function), спадает очень быстро к нулю, но не обращается в нуль. Так же, как хвост экспоненциальной функции

только ещё быстрее. Такие "экспоненциальные хвосты" очень часто встречаются в физике и технике, и ими надо уметь пренебрегать: за небольшое расстояние они становятся такими ничтожно малыми, что их нельзя измерить никакими измерениями, и ни на что во Вселенной они в принципе не влияют. А вот с точки зрения математиков, это ненулевые функции.
Этот "колокольчик Гаусса" теперь можно помножить на синусоиду, и получится типичный
волновой пакет.
А вот интерференция отдельных таких "кусочков" волн будет выглядеть наверное так: были испущены два кванта одинаковой энергии, путь одного кванта до места пересечения с другим квантом оказался на полпериода волны короче (или длиннее) в месте пересечения двух квантов можно будет зарегистрировать... даже не знаю какой термин подобрать, ведь "локальный минимум" не подойдет... если ничто не преграждает их дальнейший путь, кванты пройдут сквозь друг друга и продолжат двигаться в том же направлении.
На самом деле, в интерференционной картине будут и локальные минимумы, и локальные максимумы. А потом эти импульсы разойдутся, и область интерференции закончится, и они выйдут из неё неизменные.
Но это всё возможно даже в неквантовой теории - там, где все эти импульсы - части одной функции, а не разных.
Серия Лаймана, Бальмера... это имеется ввиду под квантовым переходом (спектральные серии)?
Спектральная серия - это серия переходов. А один переход - отвечает одной линии в серии. Разные серии связаны с разными конечными состояниями переходов:
- серия Лаймана - серия переходов на уровень 1;
- серия Бальмера - серия переходов на уровень 2;
- серия Пашена - серия переходов на уровень 3;
- серия Брэккета - серия переходов на уровень 4;
- серия Пфунда - серия переходов на уровень 5;
- серия Хэмпфри - серия переходов на уровень 6;
и так далее (уже неименованные). Схематически это выглядит примерно так:

Немного похоже на формулу для потенциальной энергии электрона в Боровской модели, вместо радиуса постоянная Планка и скорость света.
Нет, это другая величина, просто константа.
Вам надо лучше учиться читать физические формулы. Формула для потенциальной энергии (причём не электрона в Боровской модели, а любого электрического заряда в поле другого точечного заряда) - в ней как раз главной частью является радиус, функциональная зависимость

а всё остальное - это константы, коэффициенты, не влияющие на суть дела, и только задающие масштабы явления. В теорфизике, их часто сваливают в один безымянный коэффициент, или вообще выбрасывают из формул (переходя к другим единицам измерения). Так что, часто пишут именно

или

а что там за константа - не так важно.
А в "альфе" функциональных зависимостей нет вообще никаких.
Подскажите в каких единицах это измеряется.
Это безразмерное отношение. Если частота излучения, скажем,

то ширина спектральной линии будет

Или, если длина волны

то ширина спектральной линии будет

Интересно было прочесть. Картина мира становится более детализированной.
Ну, на самом деле это только самый краешек настоящей "детализированной картины". Полностью она содержится в толстых учебниках по КМ (квантовой механике) и КЭД (квантовой электродинамике). Но - по крайней мере не обман (как в школьных учебниках) и "рукомахательство" (как в учебниках для младших курсов).
В целом - да, примерно это я и хотел передать.