2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу 1, 2, 3, 4  След.
 
 Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 05:54 
Аватара пользователя


21/01/09
3924
Дивногорск
Исследуемый объект (пациент) может находится в одном из двух взаимоисключающих состояний (здоров $D_1$, болен $D_2$). Для диагностики используется признак $x$ - независимая случайная величина с известными распределениями (полученными при обработке заранее накопленного статистического материала) для одного $F_1(x)$ и для другого $F_2(x)$. Проблема возникает тогда, когда измеренное значение $x_0$ (уровень холестерина, билирубина, СОЭ и т.п.) находится в области пересечения функций $f_1(x)$ и $f_1(x)$ см. график. Рассмотрим конкретный пример: $F_{1,2}=N[\mu, \sigma]$, $\mu_1=30, \sigma_1=3$ и $\mu_2=45, \sigma_2=5$ и $x_0=36$. Соотношение между $F_1(x)$ и $F_2(x)$ - $4/1$. Тогда априорные вероятности $P_1(x>x_0)=0,023$ и $P_2(x<x_0)=0,036$ и апостериорные вероятности по формуле Байеса соответственно равны:

$P_1=\frac{0,8 \cdot 0,023 \cdot 0,964}{0,8 \cdot 0,023 \cdot 0,964+0,2 \cdot 0,036 \cdot 0,977}=0,714$ и $P_2=1-P_1=0,286$.

Тогда пациенту следует поставить диагноз $D_1$ с вероятностью $0,714$. Я правильно рассуждаю?

Изображение

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 10:31 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Александрович в сообщении #1104337 писал(а):
Проблема возникает тогда, когда измеренное значение $x_0$ (уровень холестерина, билирубина, СОЭ и т.п.) находится в области пересечения функций $f_1(x)$ и $f_1(x)$ см. график.

Получается, что проблема возникает всегда? :shock:

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 12:14 
Аватара пользователя


21/01/09
3924
Дивногорск
Brukvalub в сообщении #1104355 писал(а):
Получается, что проблема возникает всегда? :shock:

Нет, когда $x_0=20$ или $x_0=60$ проблем с диагностикой как правило нет. Хотя да, там кривые тоже пересекаются. Ну извините, неправильно сформулировал вопрос. Может поможете сделать это корректнее?

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 13:47 
Аватара пользователя


21/01/09
3924
Дивногорск
Александрович в сообщении #1104372 писал(а):
Может поможете сделать это корректнее?

Уже не надо. Придраться всегда можно. По существу вопросы будут?

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 15:51 
Заслуженный участник
Аватара пользователя


11/03/08
9874
Москва
Это не Байес. В байесовых методах всегда есть априорные вероятности.

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 18:08 
Заслуженный участник


05/08/14
1564
Да.
Александрович в сообщении #1104337 писал(а):
измеренное значение $x_0$ (уровень холестерина, билирубина, СОЭ и т.п.)

Александрович в сообщении #1104337 писал(а):
Тогда априорные вероятности $P_1(x>x_0)=0,023$ и $P_2(x<x_0)=0,036$

Измеренное - это уже не априорное. В вашем случае надо задать априорные вероятности извне - здоровый или больной ($p, 1-p$).

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 18:24 
Аватара пользователя


21/01/09
3924
Дивногорск
В двух ящиках находятся детали с указанными размерами. Извлекли одну деталь, она оказалась размером $x_0$, нашли вероятность принадлежности её к одному из ящиков. Что неправильно?

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 18:40 
Заслуженный участник
Аватара пользователя


11/03/08
9874
Москва
Не заданы априорные вероятности. Возможно, у Вас они предполагаются заданными неявно. Но нам они неизвестны. А без них - не Байес.
Ну, давайте упростим задачу, вовсе без нормального распределения.
В Арканарской казне хранятся золотые и серебряные монеты - с портретом маршала Тоца в музее и с портретом короля Пица в хранилище. В музее 2 золотые и 1 серебряная монеты с маршалом, в хранилище 1000 золотых и 2000 серебряных с королём. Нам показывают случайно отобранную монету, она золотая, и спрашивают: Король или Маршал (если не угадаем - рубят головы, как эсторским шпионам). Есть два способа случайного выбора монеты:
1. Казначей, кинув медную монетку, выбирает, из музея брать или из казны? И затем наугад берёт.
2. Казначей смешивает монеты и берёт из кучи наугад.
Стоит ли давать взятку лакею казначея, чтобы он сообщил, каким способом руководствовался его хозяин?

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 18:47 
Заслуженный участник


05/08/14
1564
Александрович в сообщении #1104422 писал(а):
В двух ящиках находятся детали с указанными размерами. Извлекли одну деталь, она оказалась размером $x_0$, нашли вероятность принадлежности её к одному из ящиков. Что неправильно?

Должна быть задана априорная вероятность распределения между ящиками.

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 18:56 
Аватара пользователя


21/01/09
3924
Дивногорск
dsge в сообщении #1104425 писал(а):
Должна быть задана априорная вероятность распределения между ящиками.

Это что такое? Задана внитриящичная вероятность. И ящиков 4 к 1.

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 18:58 
Заслуженный участник
Аватара пользователя


11/03/08
9874
Москва
О! Вот уже и априорная вероятность пришла! Где ж это ты, голубушка, задержалась!

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 19:09 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
А еще, Александрович, можно открыть любой учебник по ТВ и посмотреть в нем описание схемы Байеса. Тогда станет ясно, что такое априорные и апостериорные вероятности, и как эта схема работает.

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 19:15 
Аватара пользователя


21/01/09
3924
Дивногорск
Евгений Машеров в сообщении #1104423 писал(а):
Не заданы априорные вероятности.

Ну как же не заданы? Графики даже приведены.

-- Сб мар 05, 2016 23:19:03 --

Brukvalub в сообщении #1104433 писал(а):
А еще, Александрович, можно открыть любой учебник по ТВ и посмотреть в нем описание схемы Байеса. Тогда станет ясно, что такое априорные и апостериорные вероятности, и как эта схема работает.

У меня проблем с методом Байеса для дискретных распределений нет никаких. Что такое априорные и апостериорные вероятности я прекрасно знаю и здесь это показал.

-- Сб мар 05, 2016 23:21:16 --

Евгений Машеров в сообщении #1104429 писал(а):
О! Вот уже и априорная вероятность пришла! Где ж это ты, голубушка, задержалась!

Она уже была в стартовом посте.

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 19:28 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Александрович в сообщении #1104436 писал(а):
У меня проблем с методом Байеса для дискретных распределений нет никаких. Что такое априорные и апостериорные вероятности я прекрасно знаю и здесь это показал.

Замечательно! Теперь попробуйте ответить на вопрос: какие задачи решает метод Байеса для непрерывных распределений?

 Профиль  
                  
 
 Re: Метод Байеса для непрерывных распределений
Сообщение05.03.2016, 19:34 
Аватара пользователя


21/01/09
3924
Дивногорск
Brukvalub, условие задачи и моё решение её представлены в стартовом посту. У вас есть другое, более правильное? Я бы с большим удовольствием на него бы посмотрел.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 48 ]  На страницу 1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: DariaRychenkova


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group