Начала строить идеальные квадраты чётно-чётных порядков.
На основе того идеального квадрата восьмого порядка, который мне показали.
Кстати, там, в этой статье, такой квадрат один приведён, или ещё “спрятаны”
где-нибудь? Не понимаю язык. А в Гугле переводить давно уже пробовала, это
такая тарабарщина получается, что ещё меньше понятно, чем на английском.
А идеальные квадраты высших чётно-чётных порядков есть где-нибудь?
Но вернусь к экземпляру идеального квадрата. Испытываю пристрастие к
квадратам, начинающимся с числа 1 (то есть это число стоит в левой верхней
ячейке квадрата). Всегда стараюсь строить именно такие квадраты.
Приведённый экземпляр идеального квадрата восьмого порядка, конечно, можно
сделать начинающимся с числа 1, применив к нему преобразование параллельного
переноса на торе, вот так:
1 48 49 32 25 56 41 8
60 21 12 37 36 13 20 61
4 45 52 29 28 53 44 5
57 24 9 40 33 16 17 64
6 43 54 27 30 51 46 3
63 18 15 34 39 10 23 58
7 42 55 26 31 50 47 2
62 19 14 35 38 11 22 59
Как известно, преобразование параллельного переноса на торе сохраняет
пандиагональность, но нарушает ассоциативность. И теперь квадрат уже не является
идеальным, а только пандиагональным.
Я решила построить идеальные квадраты восьмого порядка, начинающиеся с числа 1.
Прикладываю к схеме, по которой построен показанный мне экземпляр, свой метод качелей,
пишу программу, и она выдаёт мне 36 идеальных квадратов, построенных по этой схеме
и начинающихся с числа 1. Вот один из этих квадратов:
1 32 41 56 49 48 25 8
63 34 23 10 15 18 39 58
4 29 44 53 52 45 28 5
62 35 22 11 14 19 38 59
6 27 46 51 54 43 30 3
60 37 20 13 12 21 36 61
7 26 47 50 55 42 31 2
57 40 17 16 9 24 33 64
Собираюсь написать статью об идеальных квадратах чётно-чётных порядков.
Сейчас попробую построить по аналогичной схеме идеальный квадрат 12-ого порядка.
Хотя пока даже не знаю, существует ли такой квадрат. Кто-нибудь знает?
Кстати, схема, по которой строятся эти квадраты, очень похожа на схему Франклина в
его дьявольски полумагических квадратах. Термин “дьявольски полумагический” принадлежит мне. Я назвала так полумагические квадраты Франклина за их свойство: их можно переносить
на торе и они остаются такими же полумагическими, то есть с такими же суммами по главным диагоналям. О квадратах Франклина см.
здесь.
Всё больше убеждаюсь в универсальности метода качелей. С помощью этого метода
я строила: а) полумагические квадраты; б) магические квадраты; в) ассоциативные квадраты
(всех порядков, для которых они существуют);
г) пандиагональные квадраты всех порядков (для которых они существуют);
д) идельные квадраты нечётных порядков.
И вот теперь построила идеальные квадраты чётно-чётного
порядка (пока только для n=8). Разве не универсальный метод? Мне известен
только ещё один такой универсальный метод – это метод построения составных квадратов.
Кто знает ещё такие универсальные методы построения магических квадратов всех видов?
Добавлено спустя 52 минуты 7 секунд:
А знаете, почему у нас получилось разное количество магических квадратов
в задаче Френикля?
Всё очень просто. Когда я говорю о некоторой схеме построения магического квадрата,
то имею в виду незыблемость расположения первых n чисел (n – порядок квадрата).
Это так называемая начальная цепочка. На этом понятии базируется мой метод качелей.
Так вот, наверняка, в ваших магических квадратах есть такие, где схема расположения
первых 8 чисел нарушена, то есть не совпадает со схемой расположения начальной цепочки
в квадрате Френикля. Схема расположения начальной цепочки точно такая же и в квадрате
Агриппа. И я почему-то уверена, что, ставив эту задачу, Френикль хотел получить пандиагональный квадрат именно с такой же начальной цепочкой. Поэтому в алгоритм моей программы и заложена незыблемость начальной цепочки (числа в ней могут переставляться,
но сама схема сохраняется!). Задача Френикля была прочитана тем, кто мне её предложил,
в архиве библиотеки с копий работ Френикля. Поэтому вполне возможно, что он не всё понял
правильно. Я поняла эту задачу именно так. Поэтому у меня так мало получилось
магических квадратов. Но даже у вас пандиагональных квадратов всё равно не получилось.
Вот тот же полумагический квадрат Агриппа 12-ого порядка превращается в магический простой перестановкой строк. Решений получается много, но во всех нарушается схема
расположения начальной цепочки. А это уже не то, что желательно получить.
В этом смысле я говорю, что по схеме Френикля-Агриппа магический квадрат
12-ого порядка не строится (даже с перевёртыванием строк и со смещением чисел в них)
а также и всех порядков n=6k, k=2,4,6… (это гипотеза!)
***
Спасибо за рекомендованный язык. Я обязательно посмотрю. А для него тоже нужен
интерпретатор?