2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5 ... 8  След.
 
 Задачи на понимание
Сообщение02.10.2015, 05:37 
Аватара пользователя
Не дает мне покоя вот этот шикарнейший список задач.

Healer в сообщении #1029953 писал(а):
1) Из города A в город B ведут 56 дорог. Из города B в город C - 79 дорог. Дорог между A и C нет. Окольных путей тоже. Сколькими способами можно добраться из A в C?
2) Какова вероятность того, что при броске двух игральных кубиков выпадет число, большее или равное 10?
3) В мешке лежат шарики двух разных цветов. Какое наименьшее количество шариков нужно вынуть из мешка вслепую, чтобы среди них заведомо оказались два шарика одного цвета?
4) Чему равна производная от $2\sin(15)$? (15 - в радианах)
5) Сколько корней у уравнения $x^2+x+67$? (рассматриваем комплексные числа)
6) Дано уравнение $(x-2)(x+3) = 2(x-2)$. Я делю обе части на $x-2$ и получаю $x = -1$. Что я сделал неправильно, почему, и как надо делать?
7) Что является пересечением двух непересекающихся множеств?

Назначение этих задач, напомню - определить, можно ли с человеком вообще говорить о математике. Мне все хочется увидеть следующую ступень - уже не со школьной, а с вузовской математикой. Назначение тоже диагностическое, задачи должны с полтычка решаться любым человеком, знакомым с азами относящегося к задаче раздела математики. На сколько-нибудь объемные расчеты решительный запрет. Я попробую. Я сам в математике новичок, и, может быть, мне это и поможет - для меня еще так мало очевидного, что если уж что-то очевидно даже мне, то куда уж очевиднее. А если напишу глупость, и меня начнут бить ногами - дак чо, я же новичок.

Задача 1. Доказать или опровергнуть утверждения:
1) Всякая ограниченная последовательность сходится.
2) Всякая сходящаяся последовательность ограничена.

Задача 2. Доказать или опровергнуть, что для любой метрики $\rho(x,y)$ верны утверждения:
1) $\rho^2(x,y)$ - метрика.
2) $\sqrt{\rho(x,y)}$ - метрика.
3)$\rho(x,y) + 1$ - метрика.

Задача 3. Будем рассматривать функции, определенные на всем $\mathbb{R}$. Назовем свойство $\varphi$ функции $f(x)$ локальным, если его выполнение на множестве $A$ равносильно его выполнению в каждой точке этого множества. Назовем свойство $\varphi$ железно локальным, если найдется такая функция $f(x)$, что свойство $\varphi$ выполняется для нее в одной и только одной точке. Назовем свойство $\varphi$ ну вообще локальным, если его выполнение или невыполнение для функции $f(x)$ в точке $x_0$ зависит только от значения функции в точке $x_0$. Какие из нижеперечисленных свойств являются: а) локальными; б) железно локальными; в) ну вообще локальными?
1) непрерывность
2) дифференцируемость
3) интегрируемость
4) ограниченность.

Задача 4. Указать на $\mathbb{R}$ со стандартной топологией
1) множество, не являющееся ни открытым, ни замкнутым
2) непустое множество с пустой границей.

Задача 5. Единица группы заявила, что в группе может быть только одна единица. Докажите или опровергните ее слова.

Задача 6. Студент, гуляя по евклидову пространству, наткнулся на векторы $\vec x, \vec y, \vec z$ такие, что $(\vec x, \vec y) = (\vec x, \vec z)$, где скобки означают скалярное произведение. Он сделал вывод, что либо $\vec y = \vec z$, либо $\vec x = \vec 0$. Что студент сделал неправильно и почему?

Задача 7. Безумный математик решил влюбиться в число из диапазона $[3; 4]$. У всех чисел этого отрезка шансы на любовь безумного математика равны. Назовите вероятность, с которой возлюбленное математиком число окажется:
1)рациональным
2)иррациональным
3)числом $\pi$.

Приглашаю уважаемых участников форума предлагать улучшения к моим задачам, а еще лучше - предлагать свои собственные из любых разделов математики, но того же уровня - для проверки самых азов из самых азов.

Всем спасибо заранее.

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 11:35 
Аватара пользователя
Отличный список! Будем думать над продолжением...

Хотя раздел 3 мне показался трудноватым для совсем уж начинающих... Железно локально -- трудно привести пример.

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 13:12 
Аватара пользователя
Anton_Peplov в сообщении #1058352 писал(а):
Назначение тоже диагностическое, задачи должны с полтычка решаться любым человеком, знакомым с азами относящегося к задаче раздела математики.

Получается, я не знаю азов для задач 2 и 3 :-)

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 13:16 
Аватара пользователя
Мне некоторые формулировки не очень понравились. Такое ощущение, что основная идея у этих задач -- сбить с толку некорректными постановками задач или нестандартными терминами.

Задача 7, например. То, что каждое число из бесконечного множества имеет одинаковые шансы в моём понимании скорее означает не то, что случайная величина распределена равномерно, а то, что вероятность для каждого числа одинакова. То есть, равна 0. А значит, ответ на все вопросы к этой задаче -- 0. Объясняется просто: только у единственного числа -- $e$ -- вероятность стать любимым равна 1, а у всех остальных вещественных чисел шансы действительно равны. Что бы там не решил этот безумец, влюбиться на том интервале у него шансов нет.

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 15:29 
Аватара пользователя
Munin в сообщении #1058414 писал(а):
Получается, я не знаю азов для задач 2 и 3 :-)


Для второй задачи - просто вспомните аксиомы метрики.
Насчет железной локальности я, возможно, действительно переборщил. Пример функции, непрерывной и дифференцируемой только в одной точке, привести не так просто. Мне эти примеры известны и, наверное, поэтому кажутся очевидными. Можно убрать железную локальность (или оставить под звездочкой, как бонус) и оставить только локальность и ну вообще локальность. Или с ними тоже какие-то проблемы?

grizzly в сообщении #1058417 писал(а):
0. Объясняется просто: только у единственного числа -- $e$ -- вероятность стать любимым равна 1, а у всех остальных вещественных чисел шансы действительно равны. Что бы там не решил этот безумец, влюбиться на том интервале у него шансов нет.

Этого я вообще не понял.

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 15:42 
Аватара пользователя
grizzly в сообщении #1058417 писал(а):
Задача 7, например. То, что каждое число из бесконечного множества имеет одинаковые шансы в моём понимании скорее означает не то, что случайная величина распределена равномерно, а то, что вероятность для каждого числа одинакова. То есть, равна 0


Т.е. распределение непрерывное, а следовательно у любого не более чем счётного множества вероятность 0, а у его дополнения 1.

Разумеется, постановка задачи не даёт возможности ответить на вопрос о том какова вероятность попасть в $[3;3.5]$ или в Канторов континуум помещенный в $[3;4]$ и в этом смысле условия "неполны".

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 15:56 
Аватара пользователя
Red_Herring в сообщении #1058444 писал(а):
Т.е. распределение непрерывное, а следовательно у любого не более чем счётного множества вероятность 0, а у его дополнения 1.

Именно это и имелось в виду.

Red_Herring в сообщении #1058444 писал(а):
Разумеется, постановка задачи не даёт возможности ответить на вопрос о том какова вероятность попасть в $[3;3.5]$ или в Канторов континуум помещенный в $[3;4]$

А где в задаче это спрашивается?

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 16:17 
Аватара пользователя
Red_Herring в сообщении #1058444 писал(а):
Т.е. распределение непрерывное, а следовательно у любого не более чем счётного множества вероятность 0, а у его дополнения 1.

Спасибо, так понятно. Согласен, что я оплошал и не прошёл тест на понимание формулировки задачи. Зато в таких случаях я всегда стараюсь предварять решение собственной формулировкой -- это меньшее из зол.

Anton_Peplov в сообщении #1058448 писал(а):
Именно это и имелось в виду.

Кстати, здесь, наверное, не любое непрерывное распределение удовлетворяет условию. Например, вероятность невозможного события равна вероятности невероятного события (то есть, события, имеющего вероятность 0). При этом шансы у этих событий никак нельзя назвать равными (в одном случае они есть, в другом -- нет). В любом случае именно так я понимаю термин "равные шансы". Я не знаю, где этот термин описан и как понимает его автор задачи. Но согласен -- в таких случаях нужно задавать уточняющие вопросы (а ещё лучше помалкивать :) а не пытаться решать непонятое.

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 16:21 
Аватара пользователя
Предлагаю просто сказать, что распределение непрерывное, и не мучиться с пониманием слова "шанс".
grizzly, Вы говорили о некорректно поставленных задачах во множественном числе. Что там еще, на Ваш взгляд, некорректно поставлено?

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 16:24 
Аватара пользователя
Anton_Peplov в сообщении #1058448 писал(а):
Red_Herring в сообщении #1058444 писал(а):
Разумеется, постановка задачи не даёт возможности ответить на вопрос о том какова вероятность попасть в $[3;3.5]$ или в Канторов континуум помещенный в $[3;4]$

А где в задаче это спрашивается?


А нигде. Это просто к тому, что хотя описание вероятности неполное, ответы на поставленные вопросы однозначные. И это скорее плюс, чем минус.

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 16:28 
Anton_Peplov в сообщении #1058441 писал(а):
grizzly в сообщении #1058417 писал(а):
0. Объясняется просто: только у единственного числа -- $e$ -- вероятность стать любимым равна 1, а у всех остальных вещественных чисел шансы действительно равны. Что бы там не решил этот безумец, влюбиться на том интервале у него шансов нет.
Этого я вообще не понял.
Я так понимаю, это было нечто вроде шутки, переводящей задачу из области математики в область психологии, раз уж вы про любовь упомянули.

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 16:47 
Аватара пользователя
Red_Herring
Но вот в жизни не соглашусь, что для какого-нибудь непрерывного распределения, кроме равномерного, можно считать, что шансы разных чисел равны. Если плотность вероятности в одном месте в два раза выше, чем в другом, то и шансы для соответствующих точек в два раза отличаются. Даже если эти шансы нулевые, мы всё равно должны считать их разными. Неужели это можно понимать иначе? Поэтому меня подобная терминология очень нервирует -- по моему опыту в неё потом зарываются все собаки.

Anton_Peplov в сообщении #1058456 писал(а):
Предлагаю просто сказать, что распределение непрерывное, и не мучиться с пониманием слова "шанс".
grizzly, Вы говорили о некорректно поставленных задачах во множественном числе. Что там еще, на Ваш взгляд, некорректно поставлено?

Я просто кидаюсь на как на красную тряпку на всяких безумцев в условиях задачи, поскольку потом регулярно выясняется, что в ответах обязательно это безумие обыгрывается. Но Вы повода не подавали, поэтому давайте просто ограничимся моими искренними извинениями за вспыльчивость.

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 16:54 
Аватара пользователя
grizzly в сообщении #1058468 писал(а):
то и шансы для соответствующих точек в два раза отличаются. Даже если эти шансы нулевые, мы всё равно должны считать их разными.

Нули, но разные! Это круто…

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 17:05 
Аватара пользователя
Можно еще задачки на множества предложить. Например,
Задача 8. Что можно сказать о множествах $A$ и $B$, если
а) $A\cup B =A$;
б) $A\setminus B =A$;
в) $A\setminus B =B$.

Только надо бы как-то переформулировать вопрос. Потому что ответом можно, вообще говоря считать а) $A\cup B =A$, например :-(

 
 
 
 Re: Задачи на понимание
Сообщение02.10.2015, 17:13 
Аватара пользователя
provincialka в сообщении #1058474 писал(а):
Что можно сказать о множествах $A$ и $B$,

Об этих множествах я могу сказать, что они мне очень нравятся. Такой ответ подойдет?
Все-таки вопросы в математических задачах нужно ставить четче. Впрочем, Вы сами об этом говорите.

Как я понял, испытуемому предлагается обнаружить, что оба множества пусты. Но подсказывать ему это в формулировке задачи не нужно.
Нда, и как это сформулировать?..

 
 
 [ Сообщений: 113 ]  На страницу 1, 2, 3, 4, 5 ... 8  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group