2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20, 21 ... 47  След.
 
 Re: Модифицировать программу (практическая помощь)
Сообщение16.07.2015, 00:54 
Самая компактная другая:
11785542108641839: 0 4 10 18 24 30 52 70 72 84 118 130 132 150 172 178 184 192 198 202
Кроме неё есть и ещё 11шт с разницей меньше 266, первая из них:
2854982373108907: 0 16 34 40 42 54 60 70 96 112 114 130 156 166 172 184 186 192 210 226
Длиной 22 (их всего 13шт) самая компактная эта:
18620445306703861: 0 10 36 46 66 76 82 96 102 130 136 162 168 196 202 216 222 232 252 262 288 298
Остальные все имеют разницу более 400.

(Оффтоп)

Кстати я предлагал выложить весь накопленный материал, спрашивал о удобном формате, никто не пожелал. У меня оно лежит уже в 4-х разных форматах, ну так получилось, и написаны простейшие утилитки преобразований между ними.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение16.07.2015, 12:27 
Аватара пользователя
Посмотрел, что это за Boinc такой. Вот цитата из описания:
Цитата:
What resources are needed to create a BOINC project?

If you have an existing application, figure on about three man-months to create the project: one month of an experienced sys admin, one month of a programmer, and one month of a web developer (these are very rough estimates). Once the project is running, budget a 50% FTE (mostly system admin) to maintain it. In terms of hardware, you'll need a mid-range server computer (e.g. Dell Poweredge) plenty of memory and disk. Budget about $5,000 for this. You'll also need a fast connection to the commercial Internet (T1 or faster).

Вот теперь у меня сложилось вполне определённое мнение — ни под каким соусом в этом проекте участвовать не буду.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение16.07.2015, 17:56 
Три человека-месяца только на присоединение к проекту и это при наличии готового приложения?! И потом ещё кучу времени на администрирование? Мрак.
Пожалуй я тоже предпочту использовать свою программу, или если её не удастся разогнать, то primesieve или программу whitefox.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 00:45 
Аватара пользователя
Dmitriy40 в сообщении #988623 писал(а):
Проверены все числа до $1.78\cdot10^{16}$, покажу все известные КПППЧ длиной 22 (если не ошибаюсь все они найдены мной):
633925574060671: 0 16 40 48 58 112 118 148 156 198 216 232 250 292 300 330 336 390 400 408 432 448
2235053194261739: 0 54 68 78 92 122 150 192 200 210 224 228 242 252 260 302 330 360 374 384 398 452
3693434256575461: 0 28 46 60 112 118 156 166 178 180 186 292 298 300 312 322 360 366 418 432 450 478
6244996197964523: 0 6 26 48 74 98 110 146 198 200 230 234 264 266 318 354 366 390 416 438 458 464
7312449941282693: 0 6 18 50 56 96 116 180 204 210 260 264 314 320 344 408 428 468 474 506 518 524
11768508587048027: 0 20 96 122 132 152 176 216 222 246 272 294 320 344 350 390 414 434 444 470 546 566
12241378636561883: 0 44 54 98 110 168 200 224 264 308 330 344 366 410 450 474 506 564 576 620 630 674
12696156429346387: 0 30 100 114 132 162 166 184 204 226 232 264 270 292 312 330 334 364 382 396 466 496
13388148635660387: 0 2 66 72 84 96 140 150 176 180 186 260 266 270 296 306 350 362 374 380 444 446
14052415423668901: 0 70 88 96 100 136 142 166 178 180 226 252 298 300 312 336 342 378 382 390 408 478

Последняя 22-ка, найденная Begemot82

Код:
22930603692243341: 0, 6, 48, 66, 86, 90, 108, 132, 152, 168, 180, 308, 320, 336, 356, 380, 398, 402, 422, 440, 482, 488

Возможно, есть пропущенные.
Как я понимаю, у Begemot82 программа 22-ки не искала, поэтому у него 22-ка только из найденной 24-ки.
Поэтому можно было бы проверить все найденные им 16-ки на предмет получения из них 22-ек.

Компактность у 22-ек не очень, самая компактная из приведённых:

Код:
13388148635660387: 0 2 66 72 84 96 140 150 176 180 186 260 266 270 296 306 350 362 374 380 444 446

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 02:11 
Аватара пользователя
А кто может сказать, какова конечная цель генерации этих цепочек.
Вот скажем, прошли всю область генерации 16-к, и что с ними дальше?

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 03:14 
NT2000
Ну всю область не пройдём никогда, их количество бесконечно (может пока и не доказано строго, но очень похоже на правду).
А вообще, потом на данный список цепочек натравливается проверка каждой цепочки на образование магического пандиагонального квадрата 4х4. Иногда, очень редко, такой квадрат образуется (собирается, числа можно так расставить что получается квадрат). Цель в этом, найти такие цепочки и такие квадраты.
Собственно, целью было найти первый такой квадрат, с минимальными числами. Или доказать что единственный известный тогда квадрат и является минимальным. Но в нём числа около 3.2е17, были сомнения что он точно минимальный. И такой минимальный нашли почти год назад. Гарантированно минимальный. Цель собирать квадраты дальше ... Ну, они пригодятся (для квадратов бОльших размеров/порядка), но пальма первенства для квадратов 4х4 уже занята. :-) Можно разве что вписать своё имя (если найдёшь новый квадрат) в OEIS. ;-)
Насчёт редкости. В диапазоне чисел до 2.4е16 нашлись лишь 7 таких квадратов. Хотя цепочек было порядка 130 тысяч.

-- 17.07.2015, 03:29 --

PS. Интересно было бы оценить объём потраченных ресурсов (количество тактов процессоров) на всю эту работу ... Свои затраты я прикинуть могу (где-то около 2е17 тактов за 8 месяцев счёта для чисел до 2е16), вот остальных - нет даже близко.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 04:04 
Аватара пользователя
Dmitriy40 в сообщении #1037949 писал(а):
Ну всю область не пройдём никогда...

Я вообще-то о верхней границе предусмотренной в проекте http://primesieve.org/
на которой и основана программа whitefox.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 04:15 
Даже до неё очень далеко. Она составляет $2^{64} - 10 \cdot 2^{32} \approx 1.8\cdot10^{19}$, что при текущей скорости проверки порядка пусть даже 10трлн/ч требует более 200 лет. :-( Ну соберутся 10 энтузиастов, 20 лет, тоже немало.
А если когда и достигнем этой границы - или primesieve перепишут к тому времени для использования 128 битных чисел, или используем другую программу-генератор простых чисел.

-- 17.07.2015, 04:24 --

Вообще вопрос "а что дальше?" - очень хороший. Программу и сейчас можно написать/подправить, PrimeGrid же оперирует числами из миллионов цифр, но вот скорость проверки ... И/или объёмы необходимой памяти ... Грустно. Я пока на такие большие числа даже не замахиваюсь.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 07:27 
Аватара пользователя
NT2000 в сообщении #1037940 писал(а):
А кто может сказать, какова конечная цель генерации этих цепочек.
Вот скажем, прошли всю область генерации 16-к, и что с ними дальше?

Цель проекта подробно описана здесь.

В проекте мы ищем не только 16-ки, хотя и они по-прежнему интересны. И не только с точки зрения новых пандиагональных квадратов 4-го порядка из последовательных простых чисел, но и, например, в плане компактности и частоты распределения среди множества простых чисел.

Мне интересно также, почему найдено уже несколько тысяч 16-ок и не найдено ни одной 17-ки!
Чем это объясняется :?:
И вообще для нечётных $n$ всё гораздо хуже. Для чётных $n$ уже найдена 24-ка, а для нечётных - всего только 15-ки.

В общем, у меня исследовательский интерес.
Представьте: из нескольких тысяч 16-ок составились всего 8 квадратов (ассоциативные квадраты Стенли и пандиагональные квадраты 4-го порядка). Вот такие редкие жемчужины! Как не восхищаться красотой этих жемчужин. Спасибо всем, кто их нашёл.

Ну и дополняем сразу несколько последовательностей в OEIS.
Кстати, вчера внесла изменения в две последовательности - A081235, A256234.
В первой пока добавление не утвердили, а во второй утвердили. Это результаты Begemot82.

-- Пт июл 17, 2015 08:37:45 --

NT2000
вы решили поучаствовать в проекте?

-- Пт июл 17, 2015 08:41:19 --

NT2000 в сообщении #1037957 писал(а):
Dmitriy40 в сообщении #1037949 писал(а):
Ну всю область не пройдём никогда...

Я вообще-то о верхней границе предусмотренной в проекте http://primesieve.org/
на которой и основана программа whitefox.


whitefox в сообщении #939672 писал(а):
Библиотека primesieve использует 64-битные беззнаковые числа, наибольшее такое число примерно $1{,}8\cdot10^{19}$ (18 квинтиллионов).

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 08:07 
Аватара пользователя
Чтобы быть абсолютно точным:
Используется синтаксис C++
/// Returns the largest valid stop number for primesieve.
  /// @return (2^64-1) - (2^32-1) * 10.
  ///
  uint64_t get_max_stop();

То есть максимальная допустимая верхняя граница равна:$$(2^{64}-1) - (2^{32}-1) \cdot 10=18\ 446\ 744\ 030\ 759\ 878\ 665$$

-- 17 июл 2015, 08:15 --

Или тоже самое в римской позиционной нумерации:
XVIII.CDXLVI.DCCXLIV.XXX.DCCLIX.DCCCLXXVIII.DCLXV
Что выглядит, имхо, куда монументальнее. :D

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 11:22 
Аватара пользователя
whitefox в сообщении #1037975 писал(а):
То есть максимальная допустимая верхняя граница равна:$$(2^{64}-1) - (2^{32}-1) \cdot 10=18\ 446\ 744\ 030\ 759\ 878\ 665$$

16-ка для квадрата Jarek вполне вписывается в проект:

$320\ 572\ 022\ 166\ 380\ 833: 0, 6, 10, 16, 18, 24, 28, 34, 60, 66, 70, 76, 78, 84, 88, 94$

Нам до неё ещё ох как далеко :D
Задача-минимум: поставить в последовательности A256234 последним квадрат Jarek.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 14:31 
Аватара пользователя
Nataly-Mak в сообщении #939733 писал(а):
Посмотрела 15-ки, найденные Dmitriy40.

Вот эта:

Код:
5531524424792777: 0 12 36 66 102 162 180 186 192 210 270 306 336 360 372

ну очень близка к 17-ке:

Код:
5531524424792771: 0, 6, 18, 42, 72, 108, 168, 186, 192, 198, 216, 276, 312, 342, 366, 378, 390

если бы последней была разность 384, а не 390.

Всего одна дырка в решении :D
Следовательно, 17-ка не так уж невозможна. Ищем-с...

Ищем и... до сих пор не нашли :-) Это удивительно!

-- Пт июл 17, 2015 15:58:33 --

А что если попробовать искать конкретно 17-ку?
Берём, например, такой паттерн:

Код:
{0, 6, 18, 42, 72, 108, 168, 186, 192, 198, 216, 276, 312, 342, 366, 378, 384}

[возможен для КПППЧ длины 17 :?: ]
и начинаем по этому паттерну искать.
Паттернов можно взять сразу несколько - возможных.

При этом начинать поиск надо с $2.4 \cdot 10^{16}$, потому что до этой точки 17-ки не найдены, если, конечно, программа нам не врёт (а такую возможность совсем нельзя исключать: ошибка может возникнуть даже там, где её меньше всего ожидаешь).

Кстати, по программе whitefox ещё не было найдено ни одного набора КПППЧ нечётной длины.
И протестировать программу для нечётных $n$ не на чем. У нас есть 15-ки, но их программа не ищет.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 15:59 
Аватара пользователя
Нашла интересные минимальные 17-tuplets:

Код:
k=17  s=66  B={0  4  10  12  16  22  24  30  36  40  42  46  52  54  60  64  66}
               
      1   734975534793324512717947  (24 digits, 2009, Joerg Waldvogel)
      2   753314125249587933791677  (2009, Joerg Waldvogel)

k=17  s=66  B={0  4  6  10  16  18  24  28  30  34  40  46  48  54  58  60  66}

      1                         13
      2    47624415490498763963983  (23 digits, 2001, Peter Leikauf and Joerg Waldvogel)
      3    78314167738064529047713  (2001, Peter Leikauf and Joerg Waldvogel)
      4    83405687980406998933663  (2001, Peter Leikauf and Joerg Waldvogel)
      5   110885131130067570042703  (24 digits, 2001, Peter Leikauf and Joerg Waldvogel)
      6   163027495131423420474913  (2001, Peter Leikauf and Joerg Waldvogel)

k=17  s=66  B={0  6  8  12  18  20  26  32  36  38  42  48  50  56  60  62  66}

      1     1620784518619319025971  (22 digits, 1997, Joerg Waldvogel)
      2     2639154464612254121531  (1998, Joerg Waldvogel)
      3     3259125690557440336631  (22 digits, 1998, Tony Forbes)
      4   124211857692162527019731  (24 digits, 2001, Peter Leikauf and Joerg Waldvogel)

k=17  s=66  B={0  2  6  12  14  20  24  26  30  36  42  44  50  54  56  62  66}

      1                         17
      2    37630850994954402655487  (23 digits,
      3    53947453971035573715707  (1998, Tony Forbes)
      4   174856263959258260646207  (2001, Peter Leikauf and Joerg Waldvogel)
      5   176964638100452596444067  (2001, Peter Leikauf and Joerg Waldvogel)
      6   207068890313310815346497  (24 digits, Peter Leikauf and Joerg Waldvogel)
      7   247620555224812786876877  (2001, Peter Leikauf and Joerg Waldvogel)
      8   322237784423505559739147  (2001, Peter Leikauf and Joerg Waldvogel)

Ссылка из Википедии
https://en.wikipedia.org/wiki/Prime_k-tuple

Но это всё нам не подходит, так как не КПППЧ.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 16:08 
Аватара пользователя
Nataly-Mak в сообщении #1037973 писал(а):
Цель проекта подробно описана здесь.
Тогда необходимо организовать прикрепленную тему (в теме только один пост), где собирать результаты в виде прикрепленных ZIP файлов, обок публиковать список участников проекта (возможно с общим числом присланных результатов). Почему один пост думаю обьяснять не надо.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение17.07.2015, 16:15 
Nataly-Mak в сообщении #1038077 писал(а):
Нашла интересные минимальные 17-tuplets
Более полный список http://anthony.d.forbes.googlepages.com/kt17.txt
Плюс данные за 2014 год http://anthony.d.forbes.googlepages.com/ktuplets.htm#largest17

 
 
 [ Сообщений: 695 ]  На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20, 21 ... 47  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group