Я писал выше в этом же сообщении, что при преобразованиях декартовых прямоугольных координат - параллельном переносе на целое значение по каждой координате и повороте на угол кратный 90 градусам, точка с целыми значениями координат переходит также в точку с целыми значениями координат. Естественно целые решения уравнения при таком повороте переходят в целые решения. По-моему это очевидно.
Это вранье! Например, уравнение
имеет решение (1 ; 0 ; 1), но "поворот" этого решения на 180 градусов дает тройку (-1 ; 0 ; 1), которая решением уже не является.
Прошу Вас вести себя на форуме корректно. Я могу ошибаться и буду благодарен за указание ошибок, но враньем не занимаюсь.
Прошу вас доказывать свои "очевидные" враные утверждения, а не заниматься размахиванием рук по типу "все очевидно и так". Также прошу вас не держать нас за дураков, выдавая за "дискуссионные темы" ту тривиальщину, которую вы переписываете сюда из учебников уже 9 стр.
-- Ср июл 08, 2015 12:38:08 --В общем случае производящая функция не обязана быть аналитической, поэтому я и пишу. Если функции (9) являются аналитическими в области
, то ........
Не нужно передергивать. До этого вы писали об аналитическом продолжении этих функций на всю комплексную плоскость без "если". Более того, пока не доказана возможность гарантированной сходимости рассматриваемых степенных рядов хоть в каком-то круге, все дальнейшие рассуждения становятся бессмысленными. Зачем городить бессмысленности?