2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Аксиомы Цермело-Френкеля и понятие предиката
Сообщение30.03.2015, 21:52 
Anton_Peplov в сообщении #998183 писал(а):
Ну, "не входит в стандартный набор" - возможно, слишком сильное выражение. Но Куратовский и Мостовский доказывают все основные теоремы без нее. Френкель и Бар-Хиллел ее, кажется, даже не упоминают (и уж точно не вносят в список необходимых в ZF(C) аксиом). Коэн говорит, что включает ее в список аксиом "по техническим причинам".
Да, без аксиомы регулярности, разумеется, можно, но с ней как-то привычнее. Для нужд математики множества $a$, для которых $a\in\ldots\in a$, как-то не особо нужны.

Anton_Peplov в сообщении #998183 писал(а):
Ох. Со всех сторон мне говорят, что я не разобрался в теме, и никто не может сказать, что же прочитать, чтобы разобраться.
Увы. Но вот, смотрите, AGu книгу показал! Ну и некоторые из ваших вопросов тоже получили здесь какой-то ответ (который всегда можно прокомментировать, если что-то не так).

 
 
 
 Re: Аксиомы Цермело-Френкеля и понятие предиката
Сообщение30.03.2015, 22:10 
Аватара пользователя
arseniiv в сообщении #998197 писал(а):
Ну и некоторые из ваших вопросов тоже получили здесь какой-то ответ (который всегда можно прокомментировать, если что-то не так).


Попросить прокомментировать можно, но в пределах разумного объема. А то, комментарий за комментарием, тут требуемая книга и напишется.

 
 
 
 Re: Аксиомы Цермело-Френкеля и понятие предиката
Сообщение30.03.2015, 23:22 
Стремление к лаконичности убило точность. :-) Я имел в виду, что вы прокомментируете что-то непонятное из ответов, если они не удовлетворили, чтобы можно было сделать следующую итерацию, если она вам на фоне книги, конечно, понадобится.

 
 
 [ Сообщений: 18 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group