2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Наблюдения к ВТФ
Сообщение18.03.2015, 19:27 
Аватара пользователя
$a^n+b^n=c^n$

при $n>2$ в целых числах решений не имеет:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Нам интересны, лишь, нечётные степени, поэтому:

$a^{2m+1}+b^{2m+1}=c^{2m+1}

или, принимая

$A=a^m$, $B=b^m$, $C=c^m$,

$aA^2+bB^2=cC^2$

или

$\frac{a}{c}$$A^2$+$\frac{b}{c}$$B^2$=$C^2$

Изображение
То есть, имеем неравенство

$a^n+b^n<c^n$

 
 
 
 Re: Наблюдения к ВТФ
Сообщение18.03.2015, 19:59 
gepl39 в сообщении #992138 писал(а):
То есть
aˆn+bˆn < cˆn
Откуда?

Кстати, по правилам форума надо приводить своё доказательство сначала для кубов, без всяких произвольных $n$.

 
 
 
 Posted automatically
Сообщение18.03.2015, 20:02 
 i  Тема перемещена из форума «Великая теорема Ферма» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы);

- не приведено доказательство для n=3.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение23.03.2015, 10:54 
Аватара пользователя
 i  Тема перемещена из форума «Карантин» в форум «Великая теорема Ферма»
Возвращено

 
 
 
 Re: Наблюдения к ВТФ
Сообщение28.03.2015, 23:34 
Аватара пользователя
Чушь, поскольку Пифагоровы штаны на числа $A^2 , B^2 , C^2 $ не налезают. :D

 
 
 
 Кто смотрит, тот видит...
Сообщение07.04.2015, 15:51 
Аватара пользователя
$a^n+b^n=c^n$

при $n>2$ в целых числах решений не имеет:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Для $m>0$:

$a^ma^2+b^mb^2=c^mc^2$

или

$\{\frac{a}{c}\}^m$$a^2$+$\{\frac{b}{c}\}^m$$b^2$=$c^2$

Изображение

То есть, имеем неравенство

$a^n+b^n<c^n$

 
 
 
 Re: Наблюдения к ВТФ
Сообщение07.04.2015, 16:46 
Откуда Вы взяли, что числа a, b, c образуют прямоугольный треугольник?
Об этом Вам писал Brukvalub в шутливой форме.

 
 
 
 Re: Наблюдения к ВТФ
Сообщение11.04.2015, 19:27 
Аватара пользователя
Для vasili
Потому, что за пределами "пифагоровых штанов"
сумма квадратов $a_i$ и $b_i$ <> $c^2$

 
 
 
 Re: Наблюдения к ВТФ
Сообщение11.04.2015, 22:43 
gepl39 в сообщении #1001196 писал(а):
То есть, имеем неравенство

$a^n+b^n<c^n$

Уважаемый gepl39!
Контрпример: $10\cdot10^2+9\cdot9^2=12\cdot12^2+1$. То есть $a^n+b^n>c^n$. Опровергает Ваше утверждение и не претендует на доказательство ВТФ.

 
 
 
 Re: Наблюдения к ВТФ
Сообщение13.04.2015, 08:23 
Аватара пользователя
Уважаемая, lasta!
Ваш контрпример не имеет отношения к проблеме: $9^3+10^3=12^3+1$.......?
Выражение
$(\frac{a}{c})^ma^2+(\frac{b}{c})^mb^2=c^2$
являет собой всего лишь модификацию канонического
$a^n+b^n=c^n$
и указывает, что решения находятся в "пифагоровых штанах".

 
 
 
 Re: Наблюдения к ВТФ
Сообщение13.04.2015, 12:23 
gepl39 в сообщении #1003282 писал(а):
являет собой всего лишь модификацию канонического
$a^n+b^n=c^n$
и указывает, что решения находятся в "пифагоровых штанах".

То, что там нет ничего - это очевидно.
Для прямоугольного треугольника не всегда существуют решения даже для квадратов. Например для четной гипотенузы не существует примитивного решения. Но, для других степеней все пытались доказать, что не существует остроугольного треугольника. Я дал вам пример как раз для этого случая.

 
 
 
 Re: Наблюдения к ВТФ
Сообщение15.04.2015, 05:35 
lasta в сообщении #1003315 писал(а):
То, что там нет ничего - это очевидно.

Вообще это частный случай общего, неинтересного и очевидного (при этом для чисел любого вида).
Не существует одинакового решения для уравнений Ферма отличающихся показателем.

 
 
 
 Re: Наблюдения к ВТФ
Сообщение15.04.2015, 16:26 
gepl39 в сообщении #1003282 писал(а):
являет собой всего лишь модификацию канонического
$a^n+b^n=c^n$

Канонического? Уравнение Ферма всегда имеет решение в иррациональных числах. Ваша же модификация не имеет решений ни в каких числах. Оно сразу превращается в неравенство, если тройка чисел удовлетворяет квадратное уравнение.

 
 
 
 Re: Наблюдения к ВТФ
Сообщение20.04.2015, 22:19 
lasta в сообщении #1004166 писал(а):
Уравнение Ферма всегда имеет решение в иррациональных числах.

Это, вроде, очевидно. Однако, надо доказать.

 
 
 
 Re: Наблюдения к ВТФ
Сообщение20.04.2015, 22:21 
Yarkin в сообщении #1006098 писал(а):
lasta в сообщении #1004166 писал(а):
Уравнение Ферма всегда имеет решение в иррациональных числах.

Это, вроде, очевидно. Однако, надо доказать.
Зачем?

 
 
 [ Сообщений: 31 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group