2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Сосуд максимального объёма
Сообщение05.03.2015, 16:07 
Аватара пользователя
Доброго времени суток, уважаемые форумчане. Помогите пожалуйста разобраться со следующим вопросом.
Коротко говоря: нужно найти такую допустимую функцию $r:[0,h]\rightarrow \mathbb{R}$ ($r=r(z)$), доставляющую максимум функционалу $$I[r] = \int_{0}^{h}\pi r^{2}dz$$
При следующих условиях: $$\int_{0}^{h}2\pi r \sqrt{1+(r_{z})^{2}}dz=S;r(0)=0;r(h)=a$$
Насколько я понимаю, теоремы для классической изопериметрической задачи тут не работают. Тогда что же делать? Заранее спасибо.

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 16:09 
Аватара пользователя
Что мешает применить методы вариационного исчисления?

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 16:11 
Аватара пользователя
ИСН, ничего не мешало бы, если бы я знал, что делать дальше. Дело в том, что обычно искать необходимо ф-ию доставляющую минимум, а не максимум. Или же я чего-то в корне не понимаю?

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 16:14 
Аватара пользователя
Omega в сообщении #986003 писал(а):
Дело в том, что обычно искать необходимо ф-ию доставляющую минимум, а не максимум.

Вообще-то условие экстремальности годится и для минимума, и для максимума, и для других подобных точек (седловых и т. п.).

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 16:19 
Аватара пользователя
Munin, ну хорошо. Вот, ищу я экстремаль для следующего вспомогательного функционала:$$Q(r) = \pi (r^{2}+2\lambda r \sqrt{1+(r_{z})^{2}})$$
Итого такое вот магическое ДУ получается: $$((1+(r_{z})^{2})(1-r r_{zz})+r(r_{z})^{2})\lambda = r(1+(r_{z})^{2})^{3/2}$$
Подозрительно не хорошее уравнение. Что-то мне подсказывает, - не то я делаю...

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 16:30 
Аватара пользователя
Omega в сообщении #986011 писал(а):
Подозрительно не хорошее уравнение.

Можно подумать, в классической изопериметрической задаче было хорошее?

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 16:35 
Аватара пользователя
Просто вот дело в том, что по-моему всё-таки не найдётся такое именно вещественное лямбда, чтобы из уравнения выше получилось уравнение на экстремаль... Ну даже если и найдётся, - то как узнать что у меня доставляется именно максимум я не пойму?

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 16:47 
Аватара пользователя
Omega в сообщении #986020 писал(а):
Ну даже если и найдётся, - то как узнать что у меня доставляется именно максимум я не пойму?

Можно посчитать вторую вариацию. Если вы извращенец. Или подставить близкую точку. Или просто по смыслу задачи и решения сказать "да это ж максимум, очевидно!".

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 18:00 
Omega
Используйте то, что подынтегральная функция не зависит от $z$. В этом случае у уравнения Эйлера-Лагранжа сразу выписывается первый интеграл $r'\frac{\partial Q}{\partial r'}-Q=C$.

Вроде экстремалью будет линейная функция, а сама поверхность -- конус (пожарные ведра).

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 18:09 
Аватара пользователя
Padawan в сообщении #986053 писал(а):
Вроде экстремалью будет линейная функция, а сама поверхность -- конус (пожарные ведра).

:shock: :shock:

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 19:09 
Насчет конуса ерунду написал. Он вообще площадь может не иметь нужную. Да и дифф. уравнению линейная функция не удовлетворяет. С какой-то другой задачей перепутал.

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 19:37 
Получается поверхность сферы.

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 19:48 
mihiv
Как Вы это получили? У меня решить уравнение $r'\frac{\partial Q}{\partial r'}-Q=C$ только при $C=0$ получилось. Получается действительно сфера, но не факт, что она будет иметь нужную площадь поверхности. Если же $C\neq 0$ то получается эллиптический интеграл (корень из многочлена четвертой степени)... Как с ним бороться, не знаю.

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 20:20 
В интеграле можно перейти от интегрирования по $z$ к интегрированию по $r, (dz=\dfrac {dz}{dr}\cdot dr)$, в результате получим:$$\pi \int \limits _0^a\dfrac {(r^2+2\lambda r\sqrt {1+p(r)^2})}{p(r)}dr$$где $p(r)=r'(z)$. Рассматривая $p(r)$ как неизвестную функцию получим для нее уравнение:$$-\dfrac {r^2}{p^2}+2\lambda r\left (-\dfrac {\sqrt {1+p^2}}{p^2}+\dfrac 1{\sqrt {1+p^2}}\right )=0$$Или после упрощений:$$\dfrac {2\lambda }{\sqrt {1+p^2}}=-r$$А это можно проинтегрировать.

 
 
 
 Re: Сосуд максимального объёма
Сообщение05.03.2015, 20:28 
Если Вы удовлетворите граничным условиям $r(0)=0$, $r(h)=a$, то получится конкретное значение $\lambda$, и конкретная функция $r(z)$ (дуга окружности), а значит и конкретная площадь поверхности вращения. Она не обязана совпасть с заданной по условию площадью $S$.

Это уравнение, у меня как раз и получилось в случае, когда $C=0$.
Padawan в сообщении #986086 писал(а):
У меня решить уравнение $r'\frac{\partial Q}{\partial r'}-Q=C$ только при $C=0$ получилось.

 
 
 [ Сообщений: 28 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group