2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 18:30 
Igor_Dmitriev в сообщении #967718 писал(а):
Хорошо: на основании чего решили, что предельные множества фрактальны?

Посмотрите что-нибудь про"подкову Смэйла" (Арнольд, Гукенхаймер и Холмс).

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 18:37 
Аватара пользователя
Igor_Dmitriev, на основании того, что их размерность не является целым числом (а какого ответа вы ещё ждёте?).

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 18:46 
Если не вру, то предельные множества будут замыканием множества неустойчивых сепаратрис, и по построению "подковы Смэйла", это множество будет произведением Канторова множества и $\matbb{R}$. Рамерность Канторова множества Вы знаете.

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 19:03 
Аватара пользователя
Aritaborian в сообщении #967725 писал(а):
Igor_Dmitriev, на основании того, что их размерность не является целым числом (а какого ответа вы ещё ждёте?).


Я бы не стал относить к фракталам любое множество с таким свойством.

(Оффтоп)

Один мой коллега, француз работающий в США, с весьма подходящей фамилией, частично напоминающей «Ляпис Трубецкой» занимался исследованием собственных значений оператора Лапласа в областях с фрактальной границей. Типичный доклад его выглядел так: в течение первых 2/3 или 3/4 доклада он вводил определение фрактала, которое было длинно и темно, и никто толком его не понимал (включая самого докладчика), потом объяснял, что это упрощенное определение, а настоящее определение гораздо длиннее и сложнее, и он его в рамках одночасового доклада привести не в состоянии, и в оставшиеся несколько минут формулировал теорему которую можно было переформулировать как «В этих условиях гипотеза Вейля—Берри верна». У математиков он собой популярностью не пользовался, особенно после того как один дотoшный шотландец нашел основополагающие ошибки, но физики вроде носились с ним как с писаной торбой, пока он им не надоел.

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 19:06 
Аватара пользователя
Red_Herring, то есть, не каждое множество с нецелой размерностью является фракталом, так? Можно пример?

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 19:12 
Red_Herring в сообщении #967740 писал(а):
исследованием собственных значений оператора Лапласа в областях с фрактальной границей

Интересно, в биллиард можно поиграть в таких областях?

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 19:31 
Аватара пользователя
Aritaborian в сообщении #967742 писал(а):
Red_Herring, то есть, не каждое множество с нецелой размерностью является фракталом, так? Можно пример?

В отсутствие определения фрактала? ROTFL

dsge в сообщении #967743 писал(а):
Интересно, в биллиард можно поиграть в таких областях?

Во-первых, как Вы изволите определить углы падения и отражения если граница совершенно негладкая? А во-вторых миниистория: Сэр Майкл Берри сформулировал эту гипотезу так:
Цитата:
Рассмотрим дирихлёвый Лапласиан в такой области и пусть $N(k)$ число его с.з. между $0$ и $-k^2$. Тогда
$N(k)= c_0k^n - c_1k^m+ o(k^m)$, где $m\in (n-1,n)$ — Хаусдорфова размерность границы, а $c_1>0$.

Сразу выяснилось, что $m$ должна быть внутренняя Минковская размерность, и тогда $O(k^m)$ совершенно тривиальна, а вот для "второго члена" нужно некоторое условие на ёмкость
Brossard, J. and Carmona, R., Can one hear the dimension of the fractal? Commun. Math. Phys., 104:103--122 (1986).

Деятельность «Ляпис Трубецкого» развернулась в 90х когда уже была ясна полная бесперспективность.

Warning: не путать с деятельностью Robert S. Strichartz по анализу на ф!

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 19:37 
Аватара пользователя
Red_Herring в сообщении #967759 писал(а):
В отсутствие определения фрактала?
Вы сказали, что не станете называть фракталом множество с нецелой размерностью (предположим, это было моё определение). Соответственно, у вас есть своё.

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 19:45 
Аватара пользователя
Aritaborian в сообщении #967763 писал(а):
Вы сказали, что не станете называть фракталом множество с нецелой размерностью (предположим, это было моё определение). Соответственно, у вас есть своё.

Нет, у меня его нет. Я с ними не работаю. Но везде народу хочется самоподобия, что бы это ни означало.
A fractal is a natural phenomenon or a mathematical set that exhibits a repeating pattern that displays at every scale. If the replication is exactly the same at every scale, it is called a self-similar pattern.

http://www.worldscientific.com/worldscinet/fractals

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 19:47 
Аватара пользователя
Теперь понял ваше мнение, спасибо.

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 21:20 
Итак, вопросы в силе: какие ещё есть формулы, кроме ф-и Вейерштрасса и почему предельные множества некоторых комплексных преобразований самоподобны?

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 21:49 
Red_Herring
Спасибо за ответ.

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 22:11 
Igor_Dmitriev
Я так понял, книгу вы открывать не собираетесь? Это потому что она на английском, или формула аттрактора IFS вам не нужна, а фракталы, являющиеся аттракторами какой-нибудь IFS, вам не интересны? (Просто интересно. Если не хотите — не отвечайте.)

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 22:36 
Red_Herring: я по поводу вашего "народу хочется самоподобия, что бы это ни означало". А что, есть различные определения самоподобия, или оно просто не определено достаточно четко? (я вовсе не пытаюсь найти у вас ошибку, мне и в самом деле любопытно, т.е. вопрос - это только вопрос, а не способ показать, какой я умный).

 
 
 
 Re: Как можно математически записать фракталы?
Сообщение24.01.2015, 23:18 
Аватара пользователя
ratay в сообщении #967839 писал(а):
А что, есть различные определения самоподобия, или оно просто не определено достаточно четко?

Думаю, что скорее последнее, потому как чтобы было общепринятое определение (Определение 1. Фракталом называется …), я вообще не видел (м.б. и есть, я не искал). А кажется, строят чего-й то, то ли в комплексной динамике, то ли где ещё, и построив говорят "смотрите кака красивая хреновинка. Значит—фрактал!" Вот Oleg Zubelevich пишет—по существу следующее "получился странный аттрактор, не точка, не предельный цикл или тор, а неведома зверушка—значит хаос! А раз хаос—он фрактал!" А то, что эргодичности в системе нет его не шибко колышет (потому что такое хаос тоже никто чётко не стал определять!). А Штрихартц вообще говорит "возьмем коврик Серпинского и определим на нем … А то возьмем это—и определим то же самое на нем". Я думаю, если устроить сегодня голосование, что такое фрактал или хаос, то ни одно предложение, кроме "отложить голосование, а пока пойти выпить") не пройдет абсолютным большинством.

 
 
 [ Сообщений: 61 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group