2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: книга про тензоры для физиков теоретиков
Сообщение12.01.2015, 23:00 

(Детальки.)

vanger в сообщении #960386 писал(а):
Определения, в которых объект объявляется набором чего-то, порождают образы, плохо упаковывающиеся в уме.
Прощайте, алгебраические системы! :D Они все — наборы (из носителей, операций, отношений).

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение04.03.2015, 16:08 
Я бы хотел порекомендовать книгу "Тензоры: учеб. пособие/АН. Остыловский Краснояр. гос. ун-т. Красноярск, 2006. - 77 с" Всего на 77 страницах даётся современое определение тензора (прослеживается физическая точка зрения) + рассматриваются некоторые физ приложения. Язык в некоторых местах из-за математезированости может быть непонятен, но общий смысл доносится хорошо.

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение04.03.2015, 18:37 
Аватара пользователя
Это называется "всякий кулик своё болото хвалит".

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение04.03.2015, 20:49 

(Оффтоп)

illuminates в сообщении #985558 писал(а):
...Всего на 77 страницах даётся современое определение тензора...
Определение тензора на 77 страницах это явный перебор)))

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение04.03.2015, 20:56 
Аватара пользователя
Новиков, Тайманов, "Современные геометрические структуры и поля" не подойдёт? Там неплохой баланс между точностью и простотой формулировок, а также есть про уравнения Максвелла и т. п.

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение06.03.2015, 12:27 
g______d
Спасибо за книжку.

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение01.06.2015, 15:41 
хочу поделится ещё следующими книгами, написанными с использованием геометрических образов (книги отходят от тензоров в сторону диф. геометрии, но всё же):
Бёрке. Пространство-Время, Геометрия, космология.
Burke. Div, grad, curl are dead
Burke. Applied Differential Geometry
Selfridge, Arnold, Warnick. Teaching Electromagnetic Field Theory Using Differential Forms
Edwards. Advanced calculus - a differential forms approach

(все книги кроме одной уже были рекомендованы Muninом в разных темах, я лишь собрал всё в кучку)

Просьба: если кто нибудь, когда нибудь (хоть через 10 лет) найдёт ещё столь интересные книги, то обязательно пишите!

(тему решил поднять так как она занесена сюда [url]dxdy.ru/post749597.html#p749597[/url] , следовательно имеет ценость для всего человечества в целом ;) )

-- 01.06.2015, 17:13 --

Munin в сообщении #959556 писал(а):
Для углублённого знакомства - надо понять тензоры как представления группы вращений, это, например, Рубаков "Классические калибровочные поля", глава 3. Здесь же надо познакомиться со спинорами. И всё. Этого хватит на всю жизнь.


Рубакова прочитал. Где посоветуете прочитать про "тензоры как представления группы вращений"?

(Оффтоп)

А какие книги по групам можно читать после него?

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение01.06.2015, 16:28 
Аватара пользователя
Вот что у меня лежит в соответствующей папочке:

    Bolibruh A.A. Uravnenija Maksvella i rassloenija (2001).djvu
    Bott R., Tu L.V. Differencial'nye formy v algebraicheskoj topologii (1989) (ru)(T)(353s).djvu
    Bressoud D.M. A radical approach to real analysis (MAA 2007)(ISBN 0883857472)(KA)(T)(340s)_MCet_.djvu
    Bressoud D.M. Second year calculus (UTM, Springer, 1991)(ISBN 038797606X)(397s)(600dpi)(T)_MCet_.djvu
    Burke W.L. Div,grad,curl are dead. (web draft II, October 1995)(K)(T)(152s)_MCta_.djvu
    Edwards C.H. Advanced calculus of several variables (AP, 1973)(ISBN 0122325508)(600dpi)(T)(465s)_MCet_.djvu
    Edwards H. Advanced calculus - a differential forms approach (1969)(400dpi)(ISBN 0817637079)(T)(522s).djvu
    Efimov N.V. Vvedenie v teoriju vneshnih form (1977)(ru)(K)(T)(88s).djvu
    Loomis L.H., Sternberg S. Advanced Calculus (free web copy, 2ed., 1990)(ISBN 0867201223)(600dpi)(T)(589s)_MCat_.djvu
    Schey H. M. Div, Grad, Curl, and All That. An Informal Text on Vector Calculus.djvu
    Selfridge, Arnold, Warnick. Teaching Electromagnetic Field Theory Using Differential Forms (IEEE Trans. Educ.)(600dpi)(T)(37s)_PE_.djvu
    Shutc B. Geometricheskie metody matematicheskoj fiziki (ru)(T)(311s).djvu
    0711.4319v2 A Hamilton-Jacobi Formalism for Thermodynamics.pdf
    Ivanov M.G. Geometricheskie metody v klassicheskoi teorii polya lekcii.pdf
    Ivanov M.G. Vvedenie v tenzory v teorii polya tensor09w.pdf
    Спивак М. Математический анализ на многообразиях.pdf
    Spivak Calculus on manifolds (Stokes theorem).pdf

(две последние - оригинал и перевод)

-- 01.06.2015 16:29:29 --

illuminates в сообщении #1022343 писал(а):
Рубакова прочитал. Где посоветуете прочитать про "тензоры как представления группы вращений"?

Дык там же в нём же всё и написано! Странный вопрос. Что такое представления группы вращений, вы понимаете?

-- 01.06.2015 16:30:40 --

illuminates в сообщении #1022343 писал(а):
А какие книги по групам можно читать после него?


 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение01.06.2015, 16:31 
Munin в сообщении #1022368 писал(а):
Вот что у меня лежит в соответствующей папочке:
Для коллекции не хватает

do Carmo M.P. Differential forms and applications (Springer, 1994)(ISBN 3540576185)(600dpi)(T)(O)(133s)_MDdg_.djvu

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение01.06.2015, 16:49 
Аватара пользователя
Спасибо!

Коллекция пополняется, вкладами добрых людей :-)

Больше всего я в ней сейчас ценю Шутца.

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение01.06.2015, 17:01 
Схоутен Я.А. Тензорный анализ для физиков.

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение01.06.2015, 17:07 
Munin
спасибо.

tolstopuz в сообщении #1022373 писал(а):
Что такое представления группы вращений, вы понимаете?

Ну группа врещений трёхмерного пространства это SO(3). Про представление сказать затрудняюсь. В Рубакове есть только фундаментальное представление и присоединённое.

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение01.06.2015, 17:39 
Аватара пользователя
illuminates в сообщении #1022399 писал(а):
Ну группа врещений трёхмерного пространства это SO(3). Про представление сказать затрудняюсь. В Рубакове есть только фундаментальное представление и присоединённое.

Можете взять $n$-ю тензорную степень от фундаментального - это и будет тензор в пространстве.
Интересней другое: она не будет неприводимым представлением. Её можно разложить на неприводимые. Примеры можно нахватать ещё по крошкам:
ФЛФ-8, главы про спины 1/2 и 1.
Хелзен, Мартин, глава 2.

-- 01.06.2015 17:42:36 --

=SSN=
Поганый twirpx закрыл скачивание, так что увы, ссылкой больше не является.

-- 01.06.2015 17:48:47 --

Нашёл на Ихтике.

-- 01.06.2015 17:52:43 --

Книжка выглядит изрядно устаревшей.

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение10.06.2015, 22:15 
Аватара пользователя
 i  Последующий вопрос отделён в новую тему по просьбе ТС.
Оффтоп отделён

 
 
 
 Re: книга про тензоры для физиков теоретиков
Сообщение13.06.2015, 03:00 
illuminates в сообщении #1022343 писал(а):
хочу поделится ещё следующими книгами, написанными с использованием геометрических образов (книги отходят от тензоров в сторону диф. геометрии, но всё же):
Бёрке. Пространство-Время, Геометрия, космология.
Burke. Div, grad, curl are dead
Burke. Applied Differential Geometry
Selfridge, Arnold, Warnick. Teaching Electromagnetic Field Theory Using Differential Forms
Edwards. Advanced calculus - a differential forms approach

(все книги кроме одной уже были рекомендованы Muninом в разных темах, я лишь собрал всё в кучку)

Просьба: если кто нибудь, когда нибудь (хоть через 10 лет) найдёт ещё столь интересные книги, то обязательно пишите!


Если Вы хотите изучить современные геометрические методы, то лучшая для Вас книга - это Frankel "Geometry of physics". Лучше, чем Дубровин-Новиков-Фоменко и Fecko на мой взгляд. Если с английским сразу будет трудновато, то параллельно читайте Шутца, но как основательный современный учебник он не годится... В Frankel в самом начале дается очень ясное изложение базовых понятий, в том числе сопряженного пространства, о котором Вы спрашивали. Можно сказать, что background сведен к минимуму. Когда освоите ее, стоит еще почитать Nicahara "Geometry, topology and physics" и Lee "Introduction to curvature" (они достаточно быстро пойдут, если тщательно изучите Frankel. Nicahara - более продвинутый курс, чем Frankel и может рассматриваться как его продолжение (повторение и ряд новых понятий). Lee нужен для углубления в риманову геометрию, если интересует ОТО). И вообще, геометрия не сводится к тензорам (формам); по сути тензоры (формы) - это просто аппарат, упрощающий выкладки в этой науке и добавляющий понимание. Аппарат этот не очень сложный, IMHO надо просто запомнить основные формулы и обозначения, - это правила игры, а затем учиться применять, - это понимание.

 
 
 [ Сообщений: 31 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group