Проанализировал коэффициенты частного решения неоднородного ДУ в общем виде.
;
; частное решение
:
1) корни действительные разные
2) корни равные
3) корни комплексно-сопряженные
Действительно, если в первом случае устремить
или в третьем
, то получим вариант решения 2). Полный вывод для случая 1), правда, пока вывел не до конца, но вольфрам выдал совпадающий результат.
В общем, проделал примерно то, что
Red_Herring советовал.
Я так понял, три случая решения не нужно воспринимать как три «совершенно разных случая» – это три варианта записи одного решения (для конкретного вида корней). Причем это одно решение, которое с гиперболическими функциями,
Red_Herring здесь уже приводил.
Нужно еще поразмыслить над тем, чем
отличается от
.
Someone, метод замены-подстановки конечно даст тот же результат. Решение ДУ второго порядка с равными корнями я проверял в частном случае как неоднородное ДУ первого порядка, правая часть которого является решением такого же ДУ первого порядка с константой в правой части. Естественно, получил ответ по варианту 2).
(Оффтоп)
По поводу замен при решении интегралов как-то мне тоже не очень приятно. Еще когда учился, не по себе было. Решал конечно. Но опять эти «разрозненные» правила: если функция такого вида – то делаем такую замену, если другого – то другую. Но хотелось понять как до этих подстановок можно было дойти. Не думаю, что математики сидели и проверяли все возможные функции. Видимо это применение опыта «от обратного»: много разных функций надифференцировали, а потом подумали «а что если наоборот». Ну да ладно, это мой извращенный способ учиться – проверять всё и не доверять даже основам. Просто когда учился времени всё проверить не было.
Спасибо за ответы.
Может подскажите литературу, по этой теме. Чтоб и вопрос
Brukvalub закрыть
Цитата:
нужно брать линейную комбинацию экспонент, а не, скажем, арктангенсов
а то я опять засомневался. Не думаю, что сумму экспонент в решении путем прозрения нашли. Наверное можно же это и доказать, только не от обратного.
Если решения ДУ получены путем угадывания, то почему в учебниках пишут наоборот – сначала есть ДУ и ищем его решение, а не наоборот (как было бы логичнее при угадывании решения) – вот есть функция, и давайте-ка найдем ДУ, решением которого она является. Хотя такой способ я видел в каком-то учебнике по теормеханике, где искали ДУ под синусоиду в решении.
А пока покручу функции по совету
provincialka