2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Линейное уравнение в частных производных II порядка.
Сообщение08.10.2014, 12:20 
Аватара пользователя
Есть известный результат, что при помощи замены переменных всегда можно преобразовать линейное ОДУ 2-го порядка
$$\frac{d^2 y}{dx^2} + A(x) \frac{dy}{dx} + B(x) y = 0,$$
к простейшему виду
$$\frac{d^2 u}{dt^2} = 0.$$

Допустим мы теперь рассматриваем линейное уравнение в частных производных второго порядка (гиперболическое):
$$\frac{\partial^2 z}{\partial x \partial y} + A(x,y) \frac{\partial z}{\partial x} + B(x,y) \frac{\partial z}{\partial y} + C(x,y) z  = 0.$$

Можно ли его привести к какому-то более простому виду?

 
 
 
 Re: Линейное уравнение в частных производных II порядка.
Сообщение08.10.2014, 14:13 
Аватара пользователя
DLL в сообщении #916514 писал(а):
Есть известный результат, что при помощи замены переменных всегда можно преобразовать линейное ОДУ 2-го порядка

Ссылочку не подбросите? Я подозреваю, что вся трудность искусственно запихивается в нахождение этой замены. Разумеется, в приведенном Вами ОДУ можно занулить $A(x)$, но в общем случае полученное уравнение содержательно не будет проще, чем исходное.

В приведенном Вами УЧП можно занулить $A(x,y)$ или $B(x,y)$, но в общем случае полученное уравнение содержательно не будет проще, чем исходное.

 
 
 
 Re: Линейное уравнение в частных производных II порядка.
Сообщение08.10.2014, 14:26 
Аватара пользователя
Цитата:
Ссылочку не подбросите?

Например: Ибрагимов "Практический курс дифференциальных уравнений и математического моделирования" (2007, с. 266).

Цитата:
Я подозреваю, что вся трудность искусственно запихивается в нахождение этой замены.

Само собой. Иначе бы все линейные ОДУ 2-го порядка решались бы мгновенно!

В данном случае, меня не интересует конструктивность нахождения этой замены, а лишь принципиальная возможность...

 
 
 
 Re: Линейное уравнение в частных производных II порядка.
Сообщение08.10.2014, 15:31 
Аватара пользователя
DLL в сообщении #916548 писал(а):
Например: Ибрагимов "Практический курс дифференциальных уравнений и математического моделирования" (2007, с. 266).

Страница 146, и канонический вид $y''+\alpha(x)y=0$. На стр 263 действительно уравнение приводится к виду $u''=0$, но для этого надо знать хотя бы одно решение и преобразование включает в себя замену и $x$ и $y$.

На Ваш вопрос ответ знает вряд ли кто, кроме самого Наиля Ибрагимова: он крупнейший (и скорее всего единственный) специалист по групповым св-вам ДУ.

 
 
 
 Re: Линейное уравнение в частных производных II порядка.
Сообщение08.10.2014, 22:59 
Аватара пользователя
Red_Herring в сообщении #916543 писал(а):
В приведенном Вами УЧП можно занулить $A(x,y)$ или $B(x,y)$

А одновременно оба - можно? Клейн-Гордон получился бы, а дальше уже не упростишь.

 
 
 
 Re: Линейное уравнение в частных производных II порядка.
Сообщение08.10.2014, 23:25 
Аватара пользователя
Munin в сообщении #916776 писал(а):
А одновременно оба - можно? Клейн-Гордон получился бы, а дальше уже не упростишь.

Ну если только $A_x=B_y$ то можно заменой $u=e^{\phi}v$

 
 
 
 Re: Линейное уравнение в частных производных II порядка.
Сообщение08.10.2014, 23:46 
Аватара пользователя
А, вы про везде...

 
 
 
 Re: Линейное уравнение в частных производных II порядка.
Сообщение09.10.2014, 08:34 
Аватара пользователя
Преобразование, связывающее два оду найдено, полагаю, так: глядя на вид допускаемой точечной группы (она д.б. в алгебраическом смысле одинакова).
Можно попытаться так же действовать и применительно к учп.

 
 
 
 Re: Линейное уравнение в частных производных II порядка.
Сообщение09.10.2014, 13:04 
Аватара пользователя
Red_Herring в сообщении #916786 писал(а):
Munin в сообщении #916776 писал(а):
А одновременно оба - можно? Клейн-Гордон получился бы, а дальше уже не упростишь.

Ну если только $A_x=B_y$ то можно заменой $u=e^{\phi}v$

А если $A_x \neq B_y$, то можно решить этот вопрос домножением на интегрирующий множитель $\mu$ :-)

 
 
 
 Re: Линейное уравнение в частных производных II порядка.
Сообщение09.10.2014, 13:25 
Аватара пользователя
DLL в сообщении #916895 писал(а):
А если $A_x \neq B_y$, то можно решить этот вопрос домножением на интегрирующий множитель $\mu$

Какой-такой интегрирующий множитель? Тут ведь есть член со смешанной второй производной, который на то сильно обидится!

 
 
 
 Re: Линейное уравнение в частных производных II порядка.
Сообщение09.10.2014, 13:39 
Аватара пользователя
Да, вы правы - член со второй производной все портит :roll:

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group