2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Решить в натуральных числах
Сообщение06.10.2014, 17:33 
Решить в натуральных числах уравнение ${a^b} = {b^a}$ при $a < b$
Данное уравнение можно решить, прологарифмировав обе части уравнения и рассмотрев функцию $\frac{{\ln (x)}}{x}$.
А возможно ли решить это уравнение без использования свойств функции и нахождения производной? Если да, подскажите пожалуйста направление.

-- 06.10.2014, 18:40 --

Я пришел только к тому, что числа должны быть одинаковой четности. К сожалению, без подсказки дальше вряд ли продвинусь..

 
 
 
 Re: Решить в натуральных числах
Сообщение06.10.2014, 18:01 
Можно, например, так. Пусть $a=\gcd{(a,b)}$ и $a=a_1d$, $b=b_1d$. Перепишем уравнение в терминах $a_1$, $b_1$ и $d$, алгебраически упростим, после чего воспользуемся взаимной простотой $a_1$ и $b_1$.

 
 
 
 Re: Решить в натуральных числах
Сообщение06.10.2014, 20:44 
nnosipov, благодарю за подсказку!
На сколько я понимаю, после упрощения получим следующее:
${a_1}^{{b_1}}{d^{{b_1}}} = {b_1}^{{a_1}}{d^{{a_1}}}$, где $\left( {{a_1},{b_1}} \right) = 1$
Перепишем иначе
$\frac{{{a_1}^{{b_1}}}}{{{b_1}^{{a_1}}}} = \frac{{{d^{{a_1}}}}}{{{d^{{b_1}}}}}$
$d$ должно быть натуральным, а для этого число слева должно быть натуральным.
Вот тут я не знаю.. Следует ли из взаимной простоты ${{a_1}}$ и ${{b_1}}$ взаимная простота ${{a_1}^{{b_1}}}$ и ${{b_1}^{{a_1}}}$ и если да, как это доказать.
Пожалуйста, можно еще подсказочку.

 
 
 
 Re: Решить в натуральных числах
Сообщение06.10.2014, 21:02 
Шклярский Д.О., Ченцов Н.Н., Яглом И.М., Избранные задачи и теоремы элементарной математики. Ч.1. Арифметика и алгебра, 5-е изд.
задача 168

 
 
 
 Re: Решить в натуральных числах
Сообщение06.10.2014, 21:18 
mihailm , спасибо большое, внимательно изучу приведенное там решение!

 
 
 
 Re: Решить в натуральных числах
Сообщение07.10.2014, 05:16 
Twidobik в сообщении #915866 писал(а):
Следует ли из взаимной простоты ${{a_1}}$ и ${{b_1}}$ взаимная простота ${{a_1}^{{b_1}}}$ и ${{b_1}^{{a_1}}}$ и если да, как это доказать.
Разумеется, следует. Вам нужно вспомнить свойства взаимно простых чисел. Или, как вариант, сослаться на основную теорему арифметики.

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group