2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Квантовая сцепленность и передача информации
Сообщение29.09.2014, 10:37 


09/09/11
11
Допустим, первый участник приготовил некоторое количество пар частиц в сцепленном состоянии, так что z-проекция первого спина +1/2, а второго спина -1/2. Из каждой пары частицу со спином +1/2 он оставляет себе, а вторую пересылает второму участнику.
Первая ситуация. Первый участник измеряет z-проекцию спина своих частиц, получает все значения +1/2. Второй участник у половины своих частиц измеряет z-проекцию спина, получает -1/2. У второй половины своих частиц он измеряет x-проекцию спина. В половине случаев он получает +1/2, а в половине -1/2.
Вторая ситуация. Первый участник измеряет x-проекцию спина своих частиц. Получает в половине случаев положительное значение и в половине случаев отрицательное. Второй участник у половины своих частиц измеряет z-проекцию. Получает 50 % положительных значений и 50 % отрицательных. У второй половины он измеряет x-компоненту спина, получает 50 % положительных значений и 50 % отрицательных.
Таким образом, второй участник может определить, какую проекцию измерял первый участник. Но такого быть не должно. Подскажите, где я ошибся?

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение29.09.2014, 11:07 
Заблокирован
Аватара пользователя


07/08/06

3474
Mitry в сообщении #913523 писал(а):
Допустим, первый участник приготовил некоторое количество пар частиц в сцепленном состоянии, так что z-проекция первого спина +1/2, а второго спина -1/2. Из каждой пары частицу со спином +1/2 он оставляет себе, а вторую пересылает второму участнику.

Если "сцепленное" у Вас - это "несепарабельное", то здесь противоречие: либо частицы не сцеплены, либо их спин по отдельности неизвестен.

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение29.09.2014, 12:06 


09/09/11
11
Да, получается, что если спин по отдельности неизвестен, то второй участник в обоих случаях получит случайный набор значений.
То есть, сцепленными могут быть состояния типа
$a|\uparrow \downarrow\rangle+b|\downarrow \uparrow\rangle$ ?

Что можно почитать чтобы лучше с этим разобраться? (можно англоязычное)

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение29.09.2014, 12:42 
Заблокирован
Аватара пользователя


07/08/06

3474
Mitry в сообщении #913542 писал(а):
То есть, сцепленными могут быть состояния типа
$a|\uparrow \downarrow\rangle+b|\downarrow \uparrow\rangle$ ?

Да, вроде так. Я вместо стрелочек для себя явно выписываю вектора $(0 1)'$, так получается проще.

Mitry в сообщении #913542 писал(а):
Что можно почитать чтобы лучше с этим разобраться? (можно англоязычное)

Я не специалист, могу написать только то, что читал сам.
1) Фейнмановские лекции по физике (частично т.3 и т.8)
2) Описание основных экспериментов - какие найдёте, типа опыта Штерна-Герлаха, двухфотонная дифракция, отложенный выбор (можно здесь по форуму даже поискать - я когда-то давал ссылки на интересные эксперименты).
3) Менский, особенно статья "... новая формулировка старых вопросов", книга "Квантовые измерения и декогеренция" (тут будьте осторожны - берите только строгую часть, про сознание и множественные миры можно не читать).
4) Доронин, статьи "Сепарабельные состояния" и "Мера квантовой запутанности чистых состояний" (тут будьте осторожны - берите только две рекомендованные статьи, его квантовую магию не читайте - это всё отсебятина).
5) Зурек, "Декогеренция и переход от квантового мира к классическому".
6) ... всё, что найдёте...

Чем хорошо изложение у Доронина - там формализм даётся "на пальцах", без сокращений - просто вектора и матрицы, так что понятно неспециалисту. Но вся его остальная "квантовая магия" - махровая альтернативщина. Просто я не нашёл других источников, где бы так подробно давались элементарные выкладки.

Ещё особенно интересен пример с чёрным и белым шаром, которые разнесли по разным коробкам. После того, как открыли одну - мгновенно(!) узнали, какого цвета шар в другой коробке. Конечно, к этому примеру всё не сведётся, но если о нём не забывать, то всяческие парадоксы будут мерещиться гораздо реже :)

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение29.09.2014, 13:58 
Заблокирован
Аватара пользователя


07/08/06

3474
А, вот ещё - нужно про локальный реализм и скрытые параметры почитать.

а) Философские проблемы физики элементарных частиц (тридцать лет спустя)
б) Блохинцев - Принципиальные вопросы квантовой механики

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение29.09.2014, 14:55 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
AlexDem в сообщении #913550 писал(а):
Ещё особенно интересен пример с чёрным и белым шаром, которые разнесли по разным коробкам. После того, как открыли одну - мгновенно(!) узнали, какого цвета шар в другой коробке.

Это - самое тонкое место. Его желательно преодолеть самому, и разобраться, чем кв.мех. ситуация принципиально отличается от двух коробочек с шариками.

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение29.09.2014, 14:59 
Заблокирован
Аватара пользователя


07/08/06

3474
Да, надеюсь, Блохинцев как раз поможет...

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение15.11.2014, 23:57 


31/07/14
721
Я понял, но не врубился.
В одной коробке шар в суперпозиции чёрный-белый, в другой - в суперпозиции белый-чёрный :|

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение16.11.2014, 00:29 
Заблокирован
Аватара пользователя


07/08/06

3474
Предложенное Вами состояние $\frac{1}{\sqrt 2}(\left|b\right\rangle + \left|w\right\rangle)\otimes\frac{1}{\sqrt 2}(\left|b\right\rangle + \left|w\right\rangle)$, а надо $\frac{1}{\sqrt 2}(\left|b\right\rangle\left|w\right\rangle + \left|w\right\rangle\left|b\right\rangle)$.

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение16.11.2014, 00:54 


31/07/14
721
Я понял, но не врубился.
Я пытался сказать о другом - о "тонком месте". "Шар" в КМ всегда не белый и не чёрный. Ни до, ни после измерения.

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение16.11.2014, 01:04 
Заблокирован
Аватара пользователя


07/08/06

3474
Почему? Нет. Как измерили, так и есть. Мы можем не знать, какой шар в какой коробке, и тогда описываем систему так, как я написал. А после измерения мы о ней узнаём больше, так что можем описать как $\left|w\right\rangle\left|b\right\rangle$ или $\left|b\right\rangle\left|w\right\rangle$. Вместо шаров можно взять спины электронов - ничего не изменится. После измерения спина мы будем точно знать - какой из них какой.

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение16.11.2014, 13:47 


31/07/14
721
Я понял, но не врубился.
Точно знать будем только результат измерения, а определённого значения параметра приписать не можем.

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение16.11.2014, 14:17 
Заблокирован
Аватара пользователя


07/08/06

3474
Я Вас не понимаю. Запись $\left|w\right\rangle\left|b\right\rangle$ именно и означает, что в результате измерения левый шар у нас белый (white) а правый - чёрный (black). Т.е. то, что шар всегда "не чёрный и не белый" - неверно.

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение16.11.2014, 14:21 


31/07/14
721
Я понял, но не врубился.
AlexDem в сообщении #931747 писал(а):
то, что шар всегда "не чёрный и не белый" - неверно.
Утверждение "шар белый" или "шар чёрный" - это приписывание скрытого параметра. Со всеми вытекающими...

 Профиль  
                  
 
 Re: Квантовая сцепленность и передача информации
Сообщение16.11.2014, 14:29 
Заблокирован
Аватара пользователя


07/08/06

3474
Нет, приписывание скрытого параметра - это считать, что какой-то шар белый, а какой-то чёрный, априори, до измерения.

-- Вс ноя 16, 2014 14:35:57 --

Про скрытые параметры (кстати, не все варианты скрытых параметров невозможны) как раз интересно почитать вот это:
AlexDem в сообщении #913568 писал(а):
А, вот ещё - нужно про локальный реализм и скрытые параметры почитать.

а) Философские проблемы физики элементарных частиц (тридцать лет спустя)
б) Блохинцев - Принципиальные вопросы квантовой механики

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 28 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Serg53


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group