2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Проекторы
Сообщение28.09.2014, 01:23 
Утундрий в сообщении #912991 писал(а):
Это я среди функций от $\omega$ проекторы ищу.

Только среди функций полиномиального вида?

 
 
 
 Re: Проекторы
Сообщение28.09.2014, 01:48 
Аватара пользователя
Otta в сообщении #912997 писал(а):
Только среди функций полиномиального вида?


В конечномерном случае это не важно, для любой функции $f$ и оператора $A$ существует полином $p$, такой что $p(A)=f(A)$ (при любых разумных определениях $f(A)$).

-- Сб, 27 сен 2014 15:50:05 --

Утундрий в сообщении #912991 писал(а):
Вооот! Так в этом же и вопрос. Как это делается технически?


Что-то мне подсказывает, что в данном случае достаточно перемножить соответствующие проекторы.

 
 
 
 Re: Проекторы
Сообщение28.09.2014, 01:51 
g______d
Этот полином можно записать как-нибудь страшненько, например, в виде интеграла типа Коши, но зато уж наверняка. :mrgreen: Позаимствовав оружие у бесконечномерного случая.

(Просто не очень ясно, что известно про оператор.)

 
 
 
 Re: Проекторы
Сообщение28.09.2014, 01:52 
Аватара пользователя
Утундрий в сообщении #912991 писал(а):
Я бы с удовольствием вывалил сюда весь имеющийся ворох условий, но погожу, так как пока что не определился с диапазонами значений коэффициентов.


Это достаточно важный момент. Как правильно заметил Munin, в случае $d=3$ Ваше условие автоматически даёт диагонализуемость, а для диагональных матриц, думаю, все утвеждения достаточно понятны. В частности, как устроены все возможные инвариантные подпространства, и какие полиномы можно/нужно брать, чтобы получились проекторы на них.

-- Сб, 27 сен 2014 15:56:30 --

Otta в сообщении #913003 писал(а):
Этот полином можно записать как-нибудь страшненько, например, в виде интеграла типа Коши, но зато уж наверняка. :mrgreen: Позаимствовав оружие у бесконечномерного случая.


Нужен просто полином, у которого те же значения на спектре $A$, что и у $f$. Если есть кратные с. з., то нужно еще соответствующее количество производных (причём даже не всегда в случае кратных, а только для жордановых клеток). Конечно, чтобы точно записать полином, нужно знать спектр, но если мы хотим рассматривать все возможные (аналитические) функции, то достаточно вместо них рассматривать все возможные полиномы.

 
 
 
 Re: Проекторы
Сообщение29.09.2014, 00:14 
Аватара пользователя
g______d в сообщении #913002 писал(а):
достаточно перемножить соответствующие проекторы.

И действительно. Там же один оператор и его степени, откуда взяться примерещившейся мне было некоммутативности...

 
 
 [ Сообщений: 20 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group