2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Задачи по алгебре
Сообщение27.06.2014, 14:38 
Здравствуйте.
Я учусь в школе. Прошу указать на мои ошибки, если что-то неправильно.
Недавно я стал читать Э.Б. Винберга "Курс алгебры".
Хотелось бы, чтобы кто-нибудь проверил мои решения.
Задача 1.
Доказать, что всякая подгруппа аддитивной абелевой группы $\mathbb Z$ имеет вид $n\mathbb Z$, где $n\in\mathbb Z_+$.
Доказательство:
У всякой аддитивной абелевой группы есть две "тривиальные" подгруппы: вся группа и подгруппа, состоящая из нуля.
При $n=1$, $n=0$ $n\mathbb Z$ - "тривиальные" подгруппы аддитивной абелевой группы целых чисел.
При $n\ge 2$ $n\mathbb Z$ - также подгруппа аддитивной группы целых чисел. Действительно:
1.$n\mathbb Z$ замкнуто относительно сложения
Пусть $m,k\in n\mathbb Z$, тогда $m=nq_1$ , $k=nq_2$ \,$q_1,q_2\in\mathbb Z$.
$m+k=nq_1+nq_2=n(q_1+q_2), (q_1+q_2)\in\mathbb Z$
(Пользуемся дистрибутивностью умножения относительно сложения, так как $\mathbb Z$ -кольцо)
$(m+k)\in n\mathbb Z$
2.$m\in n\mathbb Z \rightarrow -m\in n\mathbb Z$
Очевидно. $m=nq_1 , q_1\in\mathbb Z ;n(-q_1)=-m , -q_1\in\mathbb Z$
3.$0\in n\mathbb Z$
Очевидно. $0=0n , n\in\mathbb Z_+$
Положим, что существует подгруппа аддитивной абелевой группы целых чисел, которая не представима в виде $n\mathbb Z , n\in\mathbb Z_+$.Тогда $0,a$ - элементы данной подгруппы и, так как операция сложения замкнута, $2a,-2a,...,na,-na , n\in\mathbb N$ -тоже элементы этой группы. Получаем противоречие, так как эта подгруппа представима в виде $n\mathbb Z , n\in\mathbb Z_+$, где $n=a$ или $n=-a$.

 
 
 
 Re: Задачи по алгебре
Сообщение27.06.2014, 14:41 
Аватара пользователя
nou в сообщении #880745 писал(а):
Положим, что существует подгруппа аддитивной абелевой группы целых чисел, которая не представима в виде $n\mathbb Z , n\in\mathbb Z_+$.Тогда
$0,a$ - элементы данной подгруппы и, так как операция сложения замкнута, $2a,-2a,...,na,-na , n\in\mathbb N$ -тоже элементы этой группы. Получаем противоречие, так как эта подгруппа представима в виде $n\mathbb Z , n\in\mathbb Z_+$, где $n=a$ или $n=-a$.
Вы не доказали, что все элементы этой подргуппы будут кратными $a$. Может быть, в подгрупе, кроме $0, a, -a, 2a, -2a, \dots, na, -na, \dots$, есть еще какое-нибудь $b$?

-- Пт июн 27, 2014 15:41:28 --

До этого верно.

 
 
 
 Re: Задачи по алгебре
Сообщение27.06.2014, 15:16 
Аватара пользователя
nou, да, вы взяли подгруппу, сказали, что там есть хотя бы 2 произвольных элемента и показали, что их замыкание (все что можно из них получить гурпповой операцией и взятием обратного) есть группа $n\mathbb{Z}$, то есть сейчас вы доказали, что любая нетривиальная подгруппа $\mathbb{Z}$ содержит некоторую подгруппу $n\mathbb{Z}$, так что это пока что не то.
P.S. вся группа все же не называется своей тривиальной подгруппой, но это так, обозначения.

 
 
 
 Re: Задачи по алгебре
Сообщение28.06.2014, 08:32 
Xaositect,предположим, что данной подгруппе принадлежит $b$. Тогда $b$ можно записать в виде суммы, в которой слагаемые - элементы подгруппы.Так как каждое слагаемое кратно $a$, то и сумма, то есть $b$ будет кратно $a$.
Если же данной подгруппе принадлежит $b$, и $b$ нельзя записать в виде суммы элементов подгруппы, то есть $b$ не кратен $a$, то можно показать, что подгруппа имеет вид $n\mathbb Z, n\in\mathbb Z_+$, где $n=НОД(a,b)$.

 
 
 
 Re: Задачи по алгебре
Сообщение28.06.2014, 10:56 
Аватара пользователя
nou в сообщении #881077 писал(а):
Если же данной подгруппе принадлежит $b$, и $b$ нельзя записать в виде суммы элементов подгруппы, то есть $b$ не кратен $a$, то можно показать, что подгруппа имеет вид $n\mathbb Z, n\in\mathbb Z_+$, где $n=НОД(a,b)$.
Уже лучше. А если после этого нашлось еще какое-нибудь $c$, не кратное $\textrm{НОД}(a,b)$?

 
 
 
 Re: Задачи по алгебре
Сообщение28.06.2014, 11:27 
Аватара пользователя
Xaositect намекает, что в математике "для взрослых" можно брать НОД по бесконечным множествам.

 
 
 
 Re: Задачи по алгебре
Сообщение28.06.2014, 11:31 
Аватара пользователя
Foxer в сообщении #881105 писал(а):
Xaositect намекает, что в математике "для больших" можно брать НОД по бесконечным множествам.

Только зачем?

 
 
 
 Re: Задачи по алгебре
Сообщение28.06.2014, 11:42 
Аватара пользователя
Mathusic в сообщении #881108 писал(а):
Только зачем?


Бесспорно, тут это не нужно, но вот некоторые не любят доказательства от противного.

 
 
 
 Re: Задачи по алгебре
Сообщение28.06.2014, 11:42 
Аватара пользователя
Foxer в сообщении #881105 писал(а):
Xaositect намекает, что в математике "для взрослых" можно брать НОД по бесконечным множествам.
Ни в коем случае. Ну то есть брать НОД можно, но потом придется доказывать, что он представляется линейной комбинацией некоторых элементов, а это по сути как раз наша теорема.

Я намекаю на то, что идея у nou правильная, только ее надо будет применить несколько раз. И при этом конечное число раз, потому что ...(почему? вопрос nou)

 
 
 
 Re: Задачи по алгебре
Сообщение28.06.2014, 11:46 
Аватара пользователя
Xaositect в сообщении #881112 писал(а):
Ну то есть брать НОД можно, но потом придется доказывать, что он представляется линейной комбинацией некоторых элементов, а это по сути как раз наша теорема.

Да, перегнул я палку. Мы ведь и так доказываем очевидные вещи, посему говорить слово "очевидно" запрещено =).

 
 
 
 Re: Задачи по алгебре
Сообщение28.06.2014, 12:11 
Xaositect, потому что если $\textrm{НОД}(a,b,c,...,n)=1$, то данная подгруппа группы $\mathbb Z$ превратиться в тривиальную подгруппу.

 
 
 
 Re: Задачи по алгебре
Сообщение28.06.2014, 14:08 
Аватара пользователя
Ну, я имел в виду такое рассуждение: раз у нас на каждом шаге НОД уменьшается, то рано или поздно нам придется остановиться. Не обязательно на единице.

А теперь попробуйте посностью написать аккуратное доказательство, которое сможет убедить инопланетянина, знакомого с понятиями группы, подгруппы и кольца $\mathbb{Z}$ и с алгоритмом Евклида для НОД :)

 
 
 
 Re: Задачи по алгебре
Сообщение29.06.2014, 09:17 
Задача 1.
Доказать, что всякая подгруппа аддитивной абелевой группы $\mathbb Z$ имеет вид $n\mathbb Z$, где $n\in\mathbb Z_+$.
Доказательство:
1.Докажем, что $n\mathbb Z$ - подгруппа группы $\mathbb Z$ при любом $n\in\mathbb Z_+$.
Очевидно, при $n=0, n=1$ $n\mathbb Z$ - "тривиальная" подгруппа группы $\mathbb Z$.
При $n\ge 2$ $n\mathbb Z$ - подгруппа группы $\mathbb Z$, так как: (по определению подгруппы)
1.1.$n\mathbb Z$- замкнуто относительно сложения.
Пусть $m,k\in n\mathbb Z$, тогда $m=nq_1$ , $k=nq_2$ ,$q_1,q_2\in\mathbb Z$.
$m+k=nq_1+nq_2=n(q_1+q_2), (q_1+q_2)\in\mathbb Z$
$(m+k)\in n\mathbb Z$
1.2.$m\in n\mathbb Z \rightarrow -m\in n\mathbb Z$
Очевидно.$m\in n\mathbb Z \rightarrow m=nq_1 , q_1\in\mathbb Z ;n(-q_1)=-m , -q_1\in\mathbb Z\rightarrow -m\in n\mathbb Z$
1.3.$0\in n\mathbb Z$
Очевидно. $0=0n , n\in\mathbb Z_+$
(Здесь и далее пользуемся операцией умножения, дистрибутивностью умножения относительно сложения,...,так как $\mathbb Z$ -кольцо)
Таким образом, $n\mathbb Z$ - подгруппа группы $\mathbb Z$ при любом $n\in\mathbb Z_+$.
2.Докажем, что элементы всякой "нетривиальной" подгруппы $K$ группы $\mathbb Z$ кратны $d\in\mathbb Z_+$.
Пусть $a\in K$, тогда:
2.1.Все элементы группы $K$ кратны $a$.
Всё хорошо.
2.2.В группе $K$ существует элемент $b>a$, который не кратен $a$.
Найдём $\textrm {НОД} (a,b)$ с помощью алгоритма Евклида.
$$b=aq_1+r_1$$
$$a=r_1q_2+r_2$$
$$...$$
$$r_{n-2}=r_{n-1}q_n+r_n$$
$$r_{n-1}=r_nq_{n+1}+0$$
$$q_1,q_2,...,q_{n+1}\in\mathbb Z$$
$$0<r_1<|a|$$
$$r_1,r_2,...,r_n\in K$$
$\textrm {НОД} (a,b)=r_n\in K$, так как $a$, $b$ кратны $r_n$, то и любой элемент из их замыкания будет кратен $r_n$.
Если в группе $K$ найдётся элемент не кратный $r_n$, то рассуждения будут аналогичными.
Для любой группы $K$ эти кол-во этих рассуждений будет конечно, так как на каждом шаге мы будем уменьшать НОД.(см. например Алгоритм Евклида).
Таким образом, элементы всякой "нетривиальной" подгруппы $K$ группы $\mathbb Z$ кратны $d\in\mathbb Z_+$.
Конец док-ва.

 
 
 
 Re: Задачи по алгебре
Сообщение29.06.2014, 09:32 
nou, замечательное доказательство, но очень длинное, поскольку много делений с остатком. Вы можете попробовать придумать более экономное рассуждение, где было бы ровно одно деление с остатком.

 
 
 
 Re: Задачи по алгебре
Сообщение29.06.2014, 10:23 
nnosipov, можно использовать линейное представление НОД.

 
 
 [ Сообщений: 19 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group