2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 
Сообщение12.06.2007, 23:21 
Someone писал(а):
neo66 писал(а):
Кстати, поточечная сходимость при условии ограниченности, задается слабой топологией на пространстве $C[0,1]$.

Имеется в виду ограниченность последовательности по норме?
Слабая топология на $C([0,1])$ - это наименьшая топология, в которой непрерывны все линейные функционалы на $C([0,1])$, непрерывные по обычной норме?

Нельзя ли подробнее? Что-то я не соображу, почему так.

Именно так! Обсуждение этого есть в книжке Колмогорова, Фомина, стр.~197.

 
 
 
 
Сообщение13.06.2007, 00:40 
Аватара пользователя
neo66 писал(а):
Someone писал(а):
neo66 писал(а):
Кстати, поточечная сходимость при условии ограниченности, задается слабой топологией на пространстве $C[0,1]$.

...
Нельзя ли подробнее? Что-то я не соображу, почему так.

Именно так! Обсуждение этого есть в книжке Колмогорова, Фомина, стр.~197.


Я, видимо, недостаточно однозначно выразился. Там (Глава IV, § 3, пункт 2, пример 3) обсуждается как раз достаточно очевидное утверждение, что из слабой сходимости следует поточечная (ограниченность по норме - это Теорема 1 в том же пункте). Меня интересовало как раз, почему из поточечной сходимости и ограниченности по норме следует слабая сходимость. Может быть, это как-нибудь просто доказывается, но мне ничего в голову в данный момент не приходит.

 
 
 
 
Сообщение13.06.2007, 07:31 
Аватара пользователя
Someone писал(а):
Может быть, это как-нибудь просто доказывается, но мне ничего в голову в данный момент не приходит.
А не вытекает ли это из описания общего вида линейного функционала над пространством непрерывных функций на отрезке и теорем о предельном переходе под знаком интеграла?

 
 
 
 Re: Поточечная сходимость в С[0,1] не экв. сходимости по метрике
Сообщение15.10.2017, 15:05 
День добрый.

Может кто прояснить как доказывается приведённое здесь утверждение 1?
У меня нет ни малейшей идеи. Да и сама формулировка выглядит как-то смутно.

И ещё вопрос.

RIP в сообщении #69116 писал(а):
По-моему, можно и попроще, прямо по подсказке

Согласно утв. 1, найдётся функция $x_1(t)$, для которой $d(x_1(t),0)<1$, и которая удовлетворяет условию $x_1(t)\geqslant1$ на некотором отрезочке $[t_1+\frac {h_1}3;t_1+\frac{2h_1}3]$. Опять же, согласно утв. 1, найдётся функция $x_2(t)$, для которой $d(x_2(t),0)<\frac12$, и которая удовлетворяет условию $x_2(t)\geqslant1$ на некотором отрезочке $[t_2+\frac {h_2}3;t_2+\frac{2h_2}3]\subset[t_1+\frac {h_1}3;t_1+\frac{2h_1}3]$. Отсюда до полного решения осталось сделать всего один шажок.


Не понятно как из утверждения 1 следует существование таких вот функций.

Надеюсь кто-то поможет разобрать. Ибо сейчас стопорюсь над этим вопросом

 
 
 [ Сообщений: 19 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group