2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4  След.
 
 
Сообщение04.06.2007, 23:24 
Аватара пользователя
Да...Ошибся. Спасибо.

Добавлено спустя 2 часа 31 минуту 58 секунд:

А так делать можно?

$ 1 + \cos \frac {x} {2} + \cos x = 0 | \uparrow 2$

 
 
 
 
Сообщение05.06.2007, 06:21 
Аватара пользователя
Нет. Переобозначьте х=2t и примените формулу двойного угла - уравнение сведётся к квадратному.

 
 
 
 
Сообщение05.06.2007, 10:17 
Аватара пользователя
Спасибо ;)

 
 
 
 
Сообщение07.06.2007, 11:11 
Аватара пользователя
Еще несколько вопросов :oops:

$ \sin 4x + 2\cos ^ 2x = 1 $
$ \sin 4x + 1 + \cos 2x = 1 $
$ \sin 4x + \cos 2x = 0 $
$ 2x = y $
$ \sin 2y + \cos y = 0 $
$ 2 \sin y \cos y + \cos y = 0 $
$ \cos y (2 \sin y + 1) = 0 $

Совокупность (а как ее в теге "math" делают?):
$ \cos y = 0 \Leftrightarrow y = \frac {\pi}{2} + n\pi, n \in Z $
$ \sin y = - \frac {1}{2} \Leftrightarrow y = (-1)^n  \arcsin(- \frac {1}{2} ) + n\pi, n \in Z $

Совокупность:
$ y_1 =  \frac {\pi}{2} + n\pi, n \in Z $
$ y_1 = (-1)^n \frac {2 \pi}{3} + n\pi, n \in Z $

Совокупность:
$ x_1 = \frac {\pi}{4} + \frac {n\pi}{2}, n \in Z $
$ x_2 = (-1)^n \frac {\pi}{3} + \frac {n\pi}{2}, n \in Z $

В ответах:
$ \frac {\pi}{4} + \frac {n\pi}{2}$, $ (-1)^{n+1} \frac {\pi}{12} + \frac {n\pi}{2}, n \in Z $
Видимо ошибка в том, что $ \arcsin(- \frac {1}{2} ) \neq  \frac {2 \pi}{3} $. А как вообще найти такой arcsin?
Помимо прочего, я не понимаю, почему в степени n + 1. Ведь $ n \in Z $. С таким успехом можно ведь и написать n - 10000...

P.S. А как записать -1 в степени "n + 1"? (-1)^(n+1) получается -1 в степени "(".

 
 
 
 
Сообщение07.06.2007, 11:15 
Аватара пользователя
$(-1)^{n+1}$
Совокупность пишется как-то так:
$$\left\{
\begin{array}{l}
1 \\
2
\end{array}
\right.$$
А про арксинус - ну, посмотрите на график синуса, что ли...

 
 
 
 
Сообщение07.06.2007, 11:35 
Аватара пользователя
Цитата:
Совокупность пишется как-то так:

Это же система :shock:

Цитата:
А про арксинус - ну, посмотрите на график синуса, что ли...

Да, ступил.

 
 
 
 
Сообщение07.06.2007, 11:43 
Аватара пользователя
Совокупность:
$$\left[\begin{array}{l}a\\ b\end{array}\right.$$
Код:
$$\left[\begin{array}{l}a\\ b\end{array}\right.$$

Система:
$$\left\{\begin{array}{l}a\\ b\end{array}\right.$$
Код:
$$\left\{\begin{array}{l}a\\ b\end{array}\right.$$

или
$$\begin{cases}a\\ b\end{cases}$$
Код:
$$\begin{cases}a\\ b\end{cases}$$

В двух первых примерах {l} - это строчная латинская буква "эл" в фигурных скобках. Она определяет выравнивание текста в ячейках массива по левому краю. Ещё можно написать {r} (по правому краю) и {c} (по центру). Если массив имеет несколько колонок, то нужно написать соответствующее количество букв.

 
 
 
 
Сообщение07.06.2007, 13:22 
Аватара пользователя
Спасибо

Добавлено спустя 1 час 37 минут 29 секунд:

Так почему именно "n + 1"? :shock:

 
 
 
 
Сообщение07.06.2007, 13:45 
Аватара пользователя
Ну, можно и n+3 или n+1001, сути это не меняет.

 
 
 
 
Сообщение07.06.2007, 13:54 
Аватара пользователя
Ну вот и я не понял зачем они так написали. Ну да ладно..

 
 
 
 
Сообщение07.06.2007, 14:07 
Аватара пользователя
А как бы Вы написали?

 
 
 
 
Сообщение07.06.2007, 14:07 
Аватара пользователя
Вот почему: \[\arcsin ( - \frac{1}{2}) =  - \arcsin (\frac{1}{2}) =  - \frac{\pi }{6}\]
Поэтому \[( - 1)^n \arcsin ( - \frac{1}{2}) = ( - 1)^n ( - \frac{\pi }{6}) = ( - 1)^n ( - 1)\frac{\pi }{6} = ( - 1)^{n + 1} \frac{\pi }{6}\]

 
 
 
 
Сообщение07.06.2007, 14:33 
Аватара пользователя
Цитата:
А как бы Вы написали?

Просто n. Это было бы ошибкой?..

 
 
 
 
Сообщение07.06.2007, 14:37 
Аватара пользователя
Да, это было бы ошибкой. В формуле \[( - 1)^n \arcsin \;a + \pi n\] параметр n в показателе при (-1) и после пи - один и тот же!

 
 
 
 
Сообщение07.06.2007, 14:53 
Аватара пользователя
Да, точно...:)

 
 
 [ Сообщений: 49 ]  На страницу Пред.  1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group