2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Допустима ли такая проверка?
Сообщение20.12.2013, 00:32 
Здравствуйте! В задачнике Грибанова, Титова по теории чисел попалась такая задача: Установить способ проверки результатов арифметических действий при помощи числа 9. Думал-думал, не надумал вообще ничего. Стало интересно, ну как же все-таки это можно сделать? Не выдержал, открываю ответ, читаю: Пусть $N$- натуральное число по десятичной системе счисления и $M$- сумма его цифр. В силу известного признака делимости на 9 $N\equiv M(mod\,9)$. Пусть $N_1\equiv M_1(mod\,9)$, $N_2\equiv M_2(mod\,9)$; тогда $N_1{\pm}N_2\equiv M_1{\pm}M_2(mod\,9)$, или, обозначая $M_1{\pm}M_2$ через $M$, получаем: $N_1{\pm}N_2\equiv M(mod\,9)$. Учитывая вышенаписанное, получаем $M_1{\pm}M_2\equiv M(mod\,9)$, то есть, подводят они, если сложение или вычитание выполнено верно, то сумма или разность цифр компонент сравнима с суммой или разностью цифр результата, и это бесспорно, вот только, на мой взгляд, признак этот всего лишь необходимый, но не достаточный, и с его помощью можно делать однозначные заключения лишь когда сравнение не выполняется (в этом случае равенство неверно) когда же сравнение выполняется, сделать какой-либо вывод вообще невозможно. В следующем номере они дают такое, например, задание: Проверить правильность выполнения действия: $25041+91382=116423$. В ответе вот что: $12+23\equiv 35\equiv 17(mod\,9)$ $35-17=18$ делится на 9, следовательно, сложение выполнено верно. Но ведь, по-моему, такая проверка недопустима. Ведь, если написать, что $25941+91382=116423$, а затем проверить это "равенство" таким способом, то получим, что и оно верно, но ведь это не так. Скажите, пожалуйста, я прав?

 
 
 
 Re: Допустима ли такая проверка?
Сообщение20.12.2013, 00:39 
Sinoid в сообщении #803723 писал(а):
на мой взгляд, признак этот всего лишь необходимый, но не достаточный,

Конечно. Авторы не утверждают, что он достаточный, а прямо так и пишут:
Цитата:
если сложение или вычитание выполнено верно, то сумма или разность цифр компонент сравнима с суммой или разностью цифр результата,

Обратное, разумеется, неверно.

 
 
 
 Re: Допустима ли такая проверка?
Сообщение20.12.2013, 00:45 

(Оффтоп)

Sinoid в сообщении #803723 писал(а):
В задачнике <...> попалась такая задача: Установить способ проверки результатов арифметических действий при помощи числа 9.

Тоже хочу такой задачник :D
Sinoid в сообщении #803723 писал(а):
Пусть $N$- натуральное число по десятичной системе счисления...

...целое по троичной системе счисления и рациональное по унарной системе счисления :D

Sinoid в сообщении #803723 писал(а):
Скажите, пожалуйста, я прав?
Да.

 
 
 
 Re: Допустима ли такая проверка?
Сообщение20.12.2013, 01:15 

(Оффтоп)

Нет, ну задачник, в принципе, не плохой, еще советский, а откуда там такая задача, ума не приложу.

 
 
 
 Re: Допустима ли такая проверка?
Сообщение20.12.2013, 07:13 
Аватара пользователя
Ну это встречается в разделах математического юмора. Чуть поправлю прежний пример :-)

Холмс и Ватсон покупают виски. Три бутылки по три фунта.
— С вас сорок четыре фунта, джентльмены.
— Вы нас обсчитали, мэм.
...
— Как Вам удалось так быстро обнаружить обман, Холмс?
— Элементарно, Ватсон. Признак делимости на девять. Количество предметов делится на три, цена каждого тоже. Ну и т.д.

 
 
 
 Re: Допустима ли такая проверка?
Сообщение20.12.2013, 09:55 

(Оффтоп)

Кому шутки, а мой покойный дед был артиллеристом в ВОВ. Я его в сознательном возрасте не застал, но, со слов матери, он там часто упражнялся в подобной быстрой арифметике - без калькулятора и листочка бумаги, и моментально (по понятным причинам), а окружающие условия отнюдь не соответствовали спокойному сосредоточению. Так после войны он в магазинах подобные штуки и проделывал.

 
 
 
 Re: Допустима ли такая проверка?
Сообщение20.12.2013, 11:53 
Аватара пользователя
Метод вполне доброкачественный, не надо только от него требовать то, чего он не даёт. Подобные методы применялись и применяются. Бит чётности или коды, обнаруживающие и исправляющие ошибки — из той же группы методов.
Идея состоит в следующем: если результаты вычислений оказались не согласованными, значит, была допущена ошибка. А если результаты согласованные, то это ничего не значит, но, во всяком случае, у нас нет оснований заявлять о наличии ошибки.
А абсолютную гарантию правильности результата получить невозможно: если уж мы допустили возможность ошибки, то она могла возникнуть и в проверочных вычислениях.

 
 
 
 Re: Допустима ли такая проверка?
Сообщение20.12.2013, 14:37 
Понятно. Ладно, спасибо всем.

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group