2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Приводим ли многочлен
Сообщение12.12.2013, 23:55 
Выяснить, приводим ли в $\mathbb{Q}[x]$ многочлен $x^{105} - 9$.
Есть подозрение, что многочлен вида $x^{105}-c$ приводим в $\mathbb{Q}[x]$ тогда и только тогда, когда $c$ есть третья, пятая или седьмая степень некоторого числа. Но как это показать?

 
 
 
 Re: Приводим ли многочлен
Сообщение13.12.2013, 00:17 
Аватара пользователя
Как вариант, можно рассмотреть корни этого многочлена в $\mathbb{C}$. Если многочлен приводим, то корни делителя - это подмножество корней многочлена, значит, надо рассмотреть подмножества, симметрические многочлены от которых будут иметь рациональные значения.

 
 
 
 Re: Приводим ли многочлен
Сообщение13.12.2013, 01:11 
Про симметрические многочлены мне мало что известно, да и в лекциях не рассказывалось о них.
В листке с задачами непосредственно перед этой задачей просят доказать, что неприводимость в $\mathbb{Q}[x]$ равносильна неприводимости в $\mathbb{Z}[x]$. Можно ли как-то это тут использовать?

 
 
 
 Re: Приводим ли многочлен
Сообщение13.12.2013, 03:02 
Уж и не знаю, как подсказать, чтоб не решить. Знаете теорему о рациональных корнях многочлена с целыми коэффициентами?

 
 
 
 Re: Приводим ли многочлен
Сообщение13.12.2013, 11:22 
Если рациональное число - корень, то числитель его есть делитель свободного члена, а знаменатель - делитель старшего коэффициента? Что мне это дает? Рац. корней нет, но ведь их отсутствие не гарантирует неприводимости.

 
 
 
 Re: Приводим ли многочлен
Сообщение13.12.2013, 12:06 
И правда. Забыл.

 
 
 
 Re: Приводим ли многочлен
Сообщение13.12.2013, 12:39 
$x^{105}-9=P(x)Q(x)$- коэффициенты целые.$\deg P=n<n+l=\deg Q$, $l\neq 0$
$\mod 3$
$x^{105}=\tilde{P}(x)\tilde{Q}(x)$
Значит
$P(x)=x^n+3P_1(x)$ $\deg P_1<n$ - коэффициенты целые.
$Q(x)=x^{(n+l)}+3Q_1(x)$ $\deg Q_1<n+l$ - коэффициенты целые.
$x^{105}+3x^n Q_1(x)+3x^{(n+l)}P_1(x)+9P_1(x)Q_1(x)=x^{105}-9$
$x^n Q_1(x)+x^{(n+l)}P_1(x)=-3P_1(x)Q_1(x)-3$
Коэффициент про $x^n$: $Q_1(0)$ делиться на 3. Значит $Q(0)$ делиться на 9. Значит 9 делиться на 27.

 
 
 
 Re: Приводим ли многочлен
Сообщение13.12.2013, 14:52 
А откуда получается 27? :|

 
 
 
 Re: Приводим ли многочлен
Сообщение13.12.2013, 16:58 
knwnw в сообщении #800002 писал(а):
Есть подозрение, что многочлен вида $x^{105}-c$ приводим в $\mathbb{Q}[x]$ тогда и только тогда, когда $c$ есть третья, пятая или седьмая степень некоторого числа.
Правильное подозрение. Попробуйте доказать следующее утверждение: если $\theta \in \mathbb{R}$ и $n=\min{\{k:\theta^k \in \mathbb{Q}\}}$, то многочлен $x^n-c$, где $c=\theta^n$, неприводим над $\mathbb{Q}$. Доказательство совсем элементарное.

Вообще, вопрос о неприводимости двучлена $x^n-a$ над произвольным полем основательно разобран у Ленга в "Алгебре".

 
 
 
 Re: Приводим ли многочлен
Сообщение13.12.2013, 17:36 
knwnw в сообщении #800274 писал(а):
А откуда получается 27? :|

$Q(0)$ делиться на 9, $P(0)$ делиться на 3

 
 
 
 Re: Приводим ли многочлен
Сообщение13.12.2013, 20:13 
knwnw в сообщении #800002 писал(а):
Есть подозрение, что многочлен вида $x^{105}-c$ приводим в $\mathbb{Q}[x]$ тогда и только тогда, когда $c$ есть третья, пятая или седьмая степень некоторого числа. Но как это показать?

Многоугольник Ньютона нарисуйте, что ли.

 
 
 
 Re: Приводим ли многочлен
Сообщение15.12.2013, 12:40 
Извиняюсь, что долго не отвечал.

nnosipov в сообщении #800313 писал(а):
Утверждение: если $\theta \in \mathbb{R}$ и $n=\min{\{k:\theta^k \in \mathbb{Q}\}}$, то многочлен $x^n-c$, где $c=\theta^n$, неприводим над $\mathbb{Q}$.

$x^n-\theta^n=(x-\theta)(x^{n-1}+x^{n-2}\theta+...+x\theta^{n-2}+\theta^{n-1})$ над $\mathbb{R}$.
При $n=1,2,3$ очевидно.
При $n>3$ многочлен во второй скобке над $\mathbb{R}$ разлагается в произведение многочленов первой и второй степени. Всевозможные произведения многочленов справа будут давать либо многочлен со свободным членом $\theta^q$, $q<n$, либо исходный многочлен. Значит, $x^n-\theta^n$ неприводим над $\mathbb{Q}$.
Верно?

Null в сообщении #800333 писал(а):
$Q(0)$ делиться на 9, $P(0)$ делиться на 3

Спасибо, понял.

 
 
 
 Re: Приводим ли многочлен
Сообщение15.12.2013, 12:44 
knwnw в сообщении #801352 писал(а):
Верно?
Да, верно.

 
 
 
 Re: Приводим ли многочлен
Сообщение15.12.2013, 12:46 
knwnw в сообщении #800002 писал(а):
Выяснить, приводим ли в $\mathbb{Q}[x]$ многочлен $x^{105} - 9$.
Есть подозрение, что многочлен вида $x^{105}-c$ приводим в $\mathbb{Q}[x]$ тогда и только тогда, когда $c$ есть третья, пятая или седьмая степень некоторого числа. Но как это показать?


т.е.

$105=5\cdot 7\cdot 3$

 
 
 
 Re: Приводим ли многочлен
Сообщение15.12.2013, 12:52 
А как доказать именно это утверждение:
многочлен вида $x^{105}-c$ приводим в $\mathbb{Q}[x]$ тогда и только тогда, когда $c$ есть третья, пятая или седьмая степень некоторого числа

-- 15.12.2013, 14:01 --

Null в сообщении #800205 писал(а):
$P(x)=x^n+3P_1(x)$ $deg P_1<n$ - коэффициенты целые.
$Q(x)=x^{(n+l)}+3Q_1(x)$ $deg Q_1<n+l$ - коэффициенты целые.
А откуда это? Т.е. почему $P(x)=x^n+3P_1(x) ?$

 
 
 [ Сообщений: 22 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group