2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Матричное представление
Сообщение09.11.2013, 11:10 
Как определить формальный степенной ряд в виде бесконечной вещественной матрицы.

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 11:19 
hassword в сообщении #786548 писал(а):
Как определить формальный степенной ряд в виде бесконечной вещественной матрицы.

Пока что никак. Сначала следует сформулировать, что эта матрица должна делать.

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 12:34 
ewert в сообщении #786551 писал(а):
hassword в сообщении #786548 писал(а):
Как определить формальный степенной ряд в виде бесконечной вещественной матрицы.

Пока что никак. Сначала следует сформулировать, что эта матрица должна делать.

у такой матрицы только один недостаток: умножение должно быть определено, если сходиться ряд $c_{ij}=\sum_{k=1}^\infty a_{ik}b_{kj}$ (грубо говоря)
у формального степенного ряда ( даже если он не сходиться) умножение $(g\circ f)(x)=g(f(x))$такими проблемами не страдает (мне кажется)

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 12:54 
hassword в сообщении #786565 писал(а):
у такой матрицы только один недостаток:

У какой матрицы?...

Матрица -- это вообще-то обычно матрица некоторого преобразования. Что именно и как Ваша матрица собирается преобразовывать? Или хотя бы что описывать?...

Пока что вопрос не поставлен.

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 13:17 
ewert в сообщении #786573 писал(а):
Пока что вопрос не поставлен.

Сопоставить формальному степенному ряду бесконечную матрицу, чтобы умножение формального степенного ряда переводилось в умножение бесконечных матриц.
ewert в сообщении #786573 писал(а):
У какой матрицы?...

которая описана в книге "Бесконечные матрицы и пространства последовательностей" Автор: Кук Р.

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 14:35 
Аватара пользователя
Сходу сочинил только такое представление
$$\[
\left( {\begin{array}{*{20}c}
   {a_0 } & {a_1 } & {a_2 } & {a_3 }  \\
   0 & {a_0 } & {a_1 } & {a_2 }  \\
   0 & 0 & {a_0 } & {a_1 }  \\
   0 & 0 & 0 & {a_0 }  \\

 \end{array} } \right)
\]
$$
(ну и вправо-вниз до бесконечности)

А что по этому поводу пишут в самой книжке?

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 15:15 
Утундрий в сообщении #786597 писал(а):
Сходу сочинил только такое представление

оно коммутативно(в смысле умножение)?
Утундрий в сообщении #786597 писал(а):
А что по этому поводу пишут в самой книжке?


если бы знал я бы не спрашивал

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 15:26 
А композиция $g\circ f$, по-вашему, коммутативна? Возьмите $f = x^2, g = x + 1$.

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 15:37 
Аватара пользователя
hassword в сообщении #786609 писал(а):
оно коммутативно(в смысле умножение)?

Проверьте и узнаете.
hassword в сообщении #786609 писал(а):
если бы знал я бы не спрашивал

Так зачем вы на неё ссылались? :shock:

arseniiv
Здесь речь о простом перемножении рядов.
hassword в сообщении #786578 писал(а):
чтобы умножение формального степенного ряда переводилось в умножение бесконечных матриц

(По крайней мере, так я эту фразу понял)

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 15:50 
А я так:
hassword в сообщении #786565 писал(а):
у формального степенного ряда ( даже если он не сходиться) умножение $(g\circ f)(x)=g(f(x))$такими проблемами не страдает (мне кажется)

Странное использование слова «умножение», конечно… :?

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 16:26 
Утундрий в сообщении #786614 писал(а):
Так зачем вы на неё ссылались? :shock:

на всякий пожарный
arseniiv в сообщении #786616 писал(а):
Странное использование слова «умножение», конечно… :?

умножение матриц вы называете странным
Утундрий в сообщении #786614 писал(а):
Здесь речь о простом перемножении рядов.

некоммутативное
arseniiv в сообщении #786613 писал(а):
А композиция $g\circ f$, по-вашему, коммутативна? Возьмите $f = x^2, g = x + 1$.

как и умножение матриц не коммутативна
_________________________________________________________
надо чтобы умножение было ассоциативно
например
$
\begin{pmatrix} 
 {a_0} & 0 & 0 & 0\\
{a_1} & {a_0}{a_0} & 0 & 0\\
{a_2} & 2{a_1}{a_0} & {a_0}{a_0}{a_0} & 0\\
{a_3} & 2{a_2}{a_0}+{a_1}^2 &3 {a_0}{a_1}{a_0} & {a_0}{a_0}{a_0}{a_0}
\end{pmatrix}
$
(ну и вправо-вниз до бесконечности)
ps:удундрий спасибо за нули матрицы. не за что бы не догадался

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 19:58 
Аватара пользователя
hassword в сообщении #786625 писал(а):
некоммутативное

Гм, с чего бы это?

$$\[
\left( {\begin{array}{*{20}c}
   {a_0 } & {a_1 } & {a_2 }  \\
   0 & {a_0 } & {a_1 }  \\
   0 & 0 & {a_0 }  \\

 \end{array} } \right)\left( {\begin{array}{*{20}c}
   {b_0 } & {b_1 } & {b_2 }  \\
   0 & {b_0 } & {b_1 }  \\
   0 & 0 & {b_0 }  \\

 \end{array} } \right) = \left( {\begin{array}{*{20}c}
   {a_0 b_0 } & {a_0 b_1  + a_1 b_0 } & {a_0 b_2  + a_1 b_1  + a_0 b_2 }  \\
   0 & {a_0 b_0 } & {a_0 b_1  + a_1 b_0 }  \\
   0 & 0 & {a_0 b_0 }  \\

 \end{array} } \right)
\]
$$

Как видно, все выражения симметричненькие.

P.S. Не смущайтесь, что не все результирующие компоненты влезли - матрицы бесконе-е-ечны-ы-ы-е-е-е...

P.P.S. Даже если полиномы перемножать, всё равно - бесконе-е-ечны-ы-ы-е-е-е...

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 20:12 
Утундрий я имел ввиду композицию функций. а не обычное умножение формальных рядов.(извиняюсь за не точность вопроса)
Но ваше представление верно при обычном умножении формальных рядов.Так что вы верно ответили на мой вопрос.

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 20:15 
Аватара пользователя
Кстати, а для чего оно нужно? Со строкой работать как-то удобнее, чем с крокодилом этим матричным.

 
 
 
 Re: Матричное представление
Сообщение09.11.2013, 20:52 
Утундрий в сообщении #786741 писал(а):
Кстати, а для чего оно нужно? Со строкой работать как-то удобнее, чем с крокодилом этим матричным.

экспонента формального рядя мне непонятна , может если перейти к экспоненте матрицы может станет яснее.Как то так.

 
 
 [ Сообщений: 19 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group