Помогите решить 2 задачки:
1. На берегу реки стоят 10 мужчин и 10 женщин. Есть 5 лодок. Лодки пронумерованы. Скольки способами можно рассадить людей по лодкам так, чтобы в каждую попало 2 мужчины и 2 женщины.
Не совсем понятно условие, наверное подразумевалось, что должно попасть ровно 2 мужчины и ровно 2 женщины. Исходя из этого моё решение таково:
в первую лодку может попасть
мужчин и
женщин. Для второй лодки останется 8 мужчин и 8 женщин: по
и т. д. Для последней лодки выбора не останется: 2 оставшихся мужчины и 2 женщины. Итого получаем:
Решено явно неверно, но ничего другого в голову не приходит.
2. Скольки способами можно разделить 5 игрушечных зайчиков, 7 белочек и 3 слоников среди 30-ти детей, так чтобы ни один ребёнок не получил более одной игрушки. Игрушечных животных одного вида считать полностью идентичными, детей - разными
Начинаю решать так: расположим в ряд 30 детей и напротив них 15 игрушек. получается напротив первых 15-и (5+7+3) детей есть игрушка. Остальным - не досталось. сдвинем ряд игрушек на одного ребёнка вправо. получим второй вариант расположения. так сдвигать можно 15 раз. Итого имеем 15 вариантов, в каждом и которых можно тасовать игрушки. Вопрос: скольки способами можно расположить 5+7+3 игрушек?