В данном случае решения целочисленные, всегда можно подстановкой проверить.
Совершенно верно, 3 числа можно проверить подстановкой.
Но я пялюсь в ваш график уже минуту и никак не могу понять, куда делись ещё два корня. В условии-то полином пятой степени!
Покажите, куда именно нужно смотреть, раз вы уж настаиваете, что у вас
полноценный метод.
-- Чт янв 30, 2014 23:41:11 --Вдогонку. Как именно вы предлагаете строить график?
а) Если на компьютере (как вы и сделали), то зачем этот идиотский промежуточный этап в виде какого-то там рисунка, можно же сразу забить в любую систему компьютерной алгебры исходное уравнение! Она сразу корни выдаст, избавив страждущего от "чтения" графика.
б) Если руками на листочке. При построении всё равно так или иначе придётся угадать/найти корни -1, 0 и 1. Но это легко сделать и безотносительно построения графика.
А что делать дальше? Для построения
нормального графика необходимо понять, как функция ведёт себя между этими точками. Где у неё (хотя бы примерно) максимумы и минимумы. Выпуклость, поведение на бесконечности. И прочий сопутствующий анализ.
Стоп, если мы всё это сделали, на кой чёрт нам теперь что-то рисовать?!