2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение26.03.2013, 18:19 
Заблокирован
Аватара пользователя


03/03/10

4558
Oleg Zubelevich в сообщении #701661 писал(а):
myhand в сообщении #701432 писал(а):
Можно полюбопытствовать - откуда сие определение?

бытует в нашем сообществе
В каком таком "вашем"?

Oleg Zubelevich в сообщении #701661 писал(а):
Ее определитель автоматически отличен от нуля, если строки линейно независимы, а это предполагается.
Да, это я упустил. Но примеров с $\det G=0$ это не затрагивает.

Oleg Zubelevich в сообщении #701661 писал(а):
Рассмотрите систему с лагранжианом $\tilde L={\dot x(t)}^2 - {\dot y(t)}^2$ на уровне энергии ${\dot x(t)}^2 - {\dot y(t)}^2=1$ и перепараметризуйте время если надо
Это вы мне на птичьем языке пытаетесь мне объяснить, что если фиксировать калибровку, то... Но суть в том, что ваша $\lambda$ будет тогда зависеть от этого выбора. Напр. ${\dot x(t)}^2 - {\dot y(t)}^2=g(t)$ - ничем не хуже...

Oleg Zubelevich в сообщении #701661 писал(а):
Кстати (я не специалист), а в ТО бывают лагранжианы с неголономной связью?
Собственно, калибровочные теории (полюбопытствуйте - что сие такое "калибровка Лоренца" в электродинамике)...

 Профиль  
                  
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение26.03.2013, 19:35 


10/02/11
6786
myhand в сообщении #701714 писал(а):
Но суть в том, что ваша $\lambda$ будет тогда зависеть от этого выбора

Суть не в этом. Суть в том, что существование решения гарантировано в общем случае только для систем в нормальной форме Коши. И уравнения Лагранжа со связями имеют решение именно потому, что приводимы к системе в нормальной форме Коши. Эту приводимость гарантирует сформулированная мной теорема. И ваши любимые системы с параметрическими лагранжианами имеют решение именно потому, что тоже выражаются в терминах нормальных систем.
Бессмысленно пытаться выискать примеры, которые в принципе не сводятся к системам в нормальной форме. Потому, что в этих примерах и корректность потеряется.

 Профиль  
                  
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение26.03.2013, 20:05 
Заблокирован
Аватара пользователя


03/03/10

4558
Бла-бла-бла. Суть не изменилась: вам предьявили пример, где $\lambda$ через координаты и скорости не выражается. Подобное "выражение" у вас - зависит от выбора калибровки.

 Профиль  
                  
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение26.03.2013, 21:04 


10/02/11
6786
myhand в сообщении #701767 писал(а):
Суть не изменилась: вам предьявили пример, где $\lambda$ через координаты и скорости не выражается. Подобное "выражение" у вас - зависит от выбора калибровки



ага, а этот пример мгновенно сводится к системе, которая от калибровок не зависит и удовлетворяет условиям теоремы :mrgreen: не смешите

 Профиль  
                  
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение26.03.2013, 22:27 
Заблокирован
Аватара пользователя


03/03/10

4558
Oleg Zubelevich в сообщении #701791 писал(а):
ага, а этот пример мгновенно сводится к системе, которая от калибровок не зависит
Каким образом калибровочно-инвариантную систему можно "свести" к системе, которая "от калибровок не зависит"?!

Можно фиксировать калибровку. По-разному. При этом механическая система - одна и та же. А вот ваши лямбды - получатся разными. Мой тапок, наверное, к этому моменту объяснения уже понял...
Oleg Zubelevich в сообщении #701791 писал(а):
не смешите
"Уж я хохоталась" (ц) Подумать лучше попробуйте.

 Профиль  
                  
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение27.03.2013, 00:24 


10/02/11
6786
myhand в сообщении #701831 писал(а):
Каким образом калибровочно-инвариантную систему можно "свести" к системе, которая "от калибровок не зависит"?!


Теорема. 1) Любое решение системы с лагранжианом $L=\sqrt{g_{ij}\dot x^i\dot x^j}$ может быть получено из решения системы с лагранжианом $\tilde L=g_{ij}\dot x^i\dot x^j$ путем перепараметризации времени.
2) Любое решение системы $\tilde L$ на котором положительна энергия является решением системы $L$.

И вот именно то, что система $\tilde L$ удовлетворяет условиям теоремы о множителях Лагранжа и позволяет доказать коректность в системе с лагранжианом $L$
вы напрасно так держитесь за этот пример. на самом деле, он только еще борльше проявляет глупость ваших попыток доказать ограниченность теоремы о множителях Лагранжа

myhand в сообщении #701831 писал(а):
А вот ваши лямбды - получатся разными.

почему они должны быть разными в системе $\tilde L$ которая не подвергается перепараметризациям? :mrgreen:


myhand в сообщении #701831 писал(а):
Мой тапок, наверное, к этому моменту объяснения уже понял...

значит ваши тапки не так безнадежны как вы

 Профиль  
                  
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение27.03.2013, 13:11 
Заблокирован
Аватара пользователя


03/03/10

4558
Oleg Zubelevich в сообщении #701885 писал(а):
вы напрасно так держитесь за этот пример
Это просто простейший пример того, что $\det G \ne 0$ - исключение, а не правило.

Не нравится, могу еще с десяток примеров придумать. Боюсь, вам при этом лекции по физике придется читать - иначе вы скажете, что я все это с потолка взял... Как вам такой: $L = k \left(x \dot y - y \dot x\right) - V(x, y)$?

Oleg Zubelevich в сообщении #701885 писал(а):
почему они должны быть разными в системе $\tilde L$ которая не подвергается перепараметризациям?
Потому что вы должны включать эту перепараметризацию. Иначе ваша модель с $\tilde L$ может опишет только часть дела. Она эквивалентна физическому лагранжиану $L$, только если вы говорите в конце: а $t=t(\tau)$. Физическая модель включает свободу репараметризации. И ваша $\lambda$ зависит еще и от этой (достаточно произвольной) функции, а не от $x(\tau)$, $\dot x(\tau)$ и $\tau$.

 Профиль  
                  
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение27.03.2013, 16:26 


10/02/11
6786
myhand в сообщении #702050 писал(а):
Как вам такой: $L = k \left(x \dot y - y \dot x\right) - V(x, y)$?

а никак. При наложении дополнительных связей мы опять получим $\lambda=\lambda(t,x,y,\dot x,\dot y)$ только это будет еще проще чем в головном посте -- не придется дифференцировать связь.
Т.е. это опять не пример системы в которой $\lambda$ нельзя выразить через координаты и скорости.



myhand в сообщении #702050 писал(а):
Потому что вы должны включать эту перепараметризацию. Иначе ваша модель с $\tilde L$ может опишет только часть дела.

Возьмите свой $L=\sqrt{\dot x^2-\dot y^2}$ наложите дополнительную связь и докажите теорему существования решения в полученной системе со связью

 Профиль  
                  
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение27.03.2013, 16:39 
Заблокирован
Аватара пользователя


03/03/10

4558
Oleg Zubelevich в сообщении #702169 писал(а):
Т.е. это опять не пример системы в которой $\lambda$ нельзя выразить через координаты и скорости.
Это пример, который явно не попадает под проведенные вами выше "рассуждения". Можете обобщить теорему на подобный класс задач, с вырожденной матрицей $G$ - валяйте. До кучи, вот еще пример: $L(x,\dot x,\dots, \dot z)= \frac{{\dot x}^2}{2} - \dot y z$

Oleg Zubelevich в сообщении #702169 писал(а):
Возьмите свой $L=\sqrt{\dot x^2-\dot y^2}$ наложите дополнительную связь и докажите теорему существования решения. в полученной системе со связью
Зачем это мне? Я и без этого знаю, что калибровочный произвол никуда не денется и будет влиять на выражения для ваших множителей. Только если вы фиксируете калибровку - в данном частном примере вы можете свести дело к доказанному вами выше утверждению. А то, что общее решение для $\lambda$ не зависит от этого произвола - неверно.

 Профиль  
                  
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение24.04.2013, 17:19 
Заслуженный участник


17/09/10
2158
myhand в сообщении #701432 писал(а):
Я, в принципе, догадался о чем речь - а вот книжку с подходящим словоупотреблением не могу вспомнить...

Ну, к примеру Ф.Р. Гантмахер "Лекции по аналитической механике" 1966 г. стр. 81 и её окрестности
или Я.В. Татаринов "Лекции по классической динамике" 1984 г. стр.95 и т.д. Тут, пожалуй труднее не вспомнить, чем вспомнить.
Кстати, проколов в тексте у Oleg Zubelevich не нашел.

 Профиль  
                  
 
 Re: Уравнения Лагранжа со множителями пример решения задачи
Сообщение28.04.2013, 19:08 
Заблокирован
Аватара пользователя


03/03/10

4558
scwec в сообщении #715069 писал(а):
Кстати, проколов в тексте у Oleg Zubelevich не нашел.
Прокол состоит в том, что возможный калибровочный произвол - игнорируется. Можно "обобщить" результат, доказанный выше на вырожденную $G$ - но сей калибровочный произвол потребуется зафиксировать.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 26 ]  На страницу Пред.  1, 2

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group