Можно обобщить эту лемму. Пусть на X задана структура полной решётки: Задано такое упорядочение, что для любых двух элементов x и y существует нижняя верхняя грань и нижняя верхняя грань и для любого подмножества существует нижняя верхняя грань sup (аналогично для случая, когда существует inf). Пусть в X существует минимальный элемент и отображение f:X-->X монотонное (если х>=y, то f(x)>=f(y)), тогда отображение имеет неподвижную точку.
В такой формулировке (без непрерывности) эта лемма обобщает теорему о неподвижной точке для непрерывных отображений компакта в себя. Для этого надо показать, что можно ввести структуру полной решётки, наподобие
тогда и только тогда, когда
(упорядочение не линейное), так, чтобы отображение стало монотонной.