2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 Простой диффур
Сообщение04.01.2013, 01:23 


02/10/12
91
Помогите пожалуйста разобраться с простым уравнением.
$y''=y'\ln(y');

Вот до чего я дошел
$y''=z'z;  y'=z

$z'z=z\ln(z)

$z'=\ln(z)

$\frac{dz}{dy}=\ln(z)

$\int\frac{dz}{\ln(z)}=\int{dy}

Интеграл слева не берется насколько я понимаю и следовательно я как-то не в ту сторону решаю.

 Профиль  
                  
 
 Re: Простой диффур
Сообщение04.01.2013, 01:41 


22/11/11
128
Попробуйте использовать $(\ln(y'))'=\frac{y''}{y'}$.

 Профиль  
                  
 
 Re: Простой диффур
Сообщение04.01.2013, 07:07 
Заслуженный участник
Аватара пользователя


22/01/11
2641
СПб
lyuk
Вы торопитесь)

oxid
Для начала замена $y'(x)=z(x)$, как в учебниках -- понижение порядка уравнений вида $F(x,y',y'',\ldots)=0)$

 Профиль  
                  
 
 Re: Простой диффур
Сообщение04.01.2013, 13:46 


02/10/12
91
Ну я вроде и сделал замену на z как в учебниках ;)

alcoholist в сообщении #666884 писал(а):
$y'(x)=z(x)$


Только я так понимаю нужна замена
$y'(x)=z(y)

-- 04.01.2013, 13:54 --

lyuk
Спасибо, а можетет пояснить откуда берется внешняя производная слева?

 Профиль  
                  
 
 Re: Простой диффур
Сообщение04.01.2013, 14:43 
Заслуженный участник


11/05/08
32166
oxid в сообщении #667014 писал(а):
Только я так понимаю нужна замена
$y'(x)=z(y)

Вы неправильно понимаете. "Вам подсунули гораздо лучший мех: это шанхайские барсы!" Тут основной пафос не в том, что нет иксов, а в том, что нет игреков.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group