2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Решение системы линейных сравнений от одного неизвестного
Сообщение03.12.2012, 20:24 


22/07/12
560
Sonic86 в сообщении #653402 писал(а):
Joker_vD в сообщении #653195 писал(а):
Впервые слышу про двухпроходность. В книжке "Простое и сложное в программировании" приводится весьма изящная реализация расширенного алгоритма, без всяких обращений хода. Я сам им пользуюсь, когда руками считаю
Ааа, ясно, я как всегда узнал об этом последний :-(
Joker_vD в сообщении #653195 писал(а):
э-э-э... не помню слова:
совокупности.
Кстати, зря Вы к совокупности переходите - букоф лишних много. Если $\text{НОД}(A,B,m)=D$, то Вы будете выписывать $D$ систем сравнений. Оно Вам надо?

main.c, есть такая древняя книжка Бухштаб Теория чисел. Возьмите ее, там линейные сравнения и системы линейных сравнений очень подробно разобраны в общем виде.

main.c в сообщении #653214 писал(а):
2. Коэффициент при $x$ и мод не взаимно просты.
Берем сравнение $Ax\equiv B\pmod m$. Ищем $d=\text{НОД}(A,B,m)$ (наведите мышкой на формулу, посмотрите, как она пишется). Полагаем $A'=\frac{A}{d}, B'=\frac{B}{d}, m'=\frac{m}{d}$ и тогда $Ax\equiv B\pmod m\Leftrightarrow A'x\equiv B'\pmod m'$ (по определению сравнений). Так что все сводится к случаю $\text{НОД}(A,B,m)=1$.
Снова рассмотрим сравнение $Ax\equiv B\pmod m$ уже с $\text{НОД}(A,B,m)=1$. Если теперь вдруг $\text{НОД}(A,m)=D>1$, то $m\mid Ax-B\Rightarrow D\mid Ax-B\Rightarrow D\mid B$, т.е. $D\mid \text{НОД}(A,B,m)$, что невозможно. Т.е. если вдруг $\text{НОД}(A,B,m)=1$, но $\text{НОД}(A,m)>1$, то решений нет.

main.c в сообщении #653214 писал(а):
1. Моды не взаимно просты
Если $D=\text{НОД}(m_1;m_2)$, то для существования решений сравнений $A_jx\equiv B_j\pmod{m_j}$ необходимо (и при выполнении условий выше (т.е. если каждое сравнение по отдельности имеет решение) вроде достаточно), чтобы система $A_jx\equiv B_j\pmod D, j=1;2$ имела решение (а ту уравнения проверяем на линейную зависимость и все).

Еще раз: это все изложено в Буштабе простым языком на нескольких страницах.

-- Пн дек 03, 2012 07:17:04 --

main.c в сообщении #653214 писал(а):
И вообще, какой критерий существования решений?
Наверное в случае системы с произвольным числом сравнений проверяем, что каждое сравнение имеет решение. Разлагаем модули на множители и проверяем сравнения и одинаковыми простыми в модулях на совместимость (хотя это немножко долго будет в случае больших чисел. В противном случае надо добавлять на каждом шаге одно сравнение, считать НОД-ы и проверять наличие решений и то...). Тут надо подумать немного (тем более, Вы же все в контексте алгоритма делаете). У вас произвольная система сравнений?


Спасибо за книжку).....она отличная

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 16 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group