думаю, что задача

однозначно разрешима,
При глобально липшицевой

(что с практической точки зрения является очень слабым обобщением просто линейности) решение должно существовать и быть единственным на всей оси, поскольку интегральный оператор всё равно оказывается вольтерровского типа (здесь существенно, конечно, что

именно делится на 2). Следовательно, его итерации будут в конце концов убывать быстрее геометрической прогрессии на любом конечном отрезке.
допустим тогда, что рассматривается уравнение с правой частью

, которая, вообще говоря, не аналитическася функция:

Что тогда?
Задача останется корректной для функции даже и не обязательно непрерывной -- достаточно её лишь интегрируемости. Формальное решение можно выписать, как и для обычного линейного уравнения, методом вариации произвольной постоянной.