Proggerспасибо вам огромное, что не бросили задачу.
На форуме ПЕН я подробно рассказывала о матрёшечном характере ассоциативных квадратов Стенли.
Покажу иллюстрацию одного из ваших приближений, на которой хорошо виден этот характер
При поиске это, конечно, надо учитывать. Я в своих давних экспериментах поступала так: сначала искала ассоциативные квадраты Стенли 7-го порядка; этот поиск выполняется довольно быстро даже по моей примитивной программе. Затем для тех центральных элементов, для которых квадраты 7-го порядка нашлись, уже искала ассоциативный квадрат 9-го порядка. Увы, мне далеко уйти не удалось.
Посмотрите на иллюстрацию. Все вложенные ассоциативные квадраты - порядков 3, 5, 7 - имеют ту же самую константу ассоциативности
2518246, потому что у них одинаковый центральный элемент.
Это всё просто и очевидно.
А вот самая большая матрёшка - ассоциативный квадрат 9-го порядка - уже не получилась, то есть она вполне себе хорошая, но не все числа в ней простые.
Ну, и о дырках, то бишь неправильных элементах.
Формально в решении дырка одна (не простое число, помеченное звёздочкой), фактически же дырки две - это неправильная комплементарная пара (
1076363, 1441883).
Осталось спросить третьего героя эпопеи: на чём он остановился?