По поводу кольца (алгебраического) - я тоже об этом думал и придумал следующее. Видимо, первым примером нетривиального кольца (т.е. не сводящегося к кольцу обычных чисел), моделью, было кольцо

. Но оно как раз имеет естественную структуру кольца! Потому что операция инкремента (+1), стартуя с 0 и будучи применённой n раз, возвращает нас обратно в 0, т.е. закольцовывает структуру. В этом смысле само исходное кольцо

- это кольцо "бесконечного радиуса".
Насколько правдоподобно подобное предположение?
Откуда взялось название понятия "поле" - не имею мыслей.