2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Вероятность встретить заданную последовательность байт
Сообщение25.12.2011, 18:29 
svv в сообщении #519482 писал(а):
Боюсь, что вероятность найти заданную последовательность $a=(a_1,...,a_n)$ на отрезке $[1, m]$ зависит не только от $m$ и $n$, но и от самих значений $a_1,...,a_n$.

Рассмотрим упрощённый пример. Пусть алфавит состоит из символов $0$ и $1$, и Вы изучаете первые четыре символа потока. Всего они могут принимать $16$ разных комбинаций значений. Считаем, что все комбинации равновероятны.

Если послание от братьев по разуму выглядит как $00$, Вы найдёте такое в восьми комбинациях из $16$:
$0000, 0001, 0010, 0011, 0100, 1000, 1001, 1100$

Но последовательность $01$ Вы встретите уже в одиннадцати комбинациях:
$0001, 0010, 0011, 0100, 0101, 0110, 0111, 1001, 1010, 1011, 1101$

Честно говоря, пока совершенно не понимаю, почему так получается, то есть каков механизм того, что одни последовательности более вероятны, чем другие той же длины. (Ну, и какие именно более вероятны, а какие -- менее).


Ну, это как бы известный факт - более часто встречаются последовательности, которые попадают в "типичные события" - события, имеющие вероятность, приближающуюся к единице. В вашем случае это события $A_n^\varepsilon = $ "$\big|(x_1 + \dots + x_n)/n - 1/2\big| <  \varepsilon$". А в общем случае имеется теорема, которая дает оценку вероятности $ P(A_n^\varepsilon) \approx e^{-n H_{P}(P^*)} $, где $H_{P}(P^*)$ - энтропия частотного распределения $P^*$ относительно исходного распределения $P$. Откуда с учетом того, что $H_{P}(P) = 0$, вытекает, что наибольшая вероятность у последовательностей, у которых частота встречаемости символа близка к его вероятности. У остальных экспоненциально убывающая вероятность.

 
 
 
 Re: Вероятность встретить заданную последовательность байт
Сообщение25.12.2011, 21:11 
Аватара пользователя
Ясно, спасибо!

 
 
 [ Сообщений: 17 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group