2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Задача по геометрии(отношение треугольников)
Сообщение21.11.2010, 14:54 
gris в сообщении #378490 писал(а):
Но сдаётся мне, что есть и ещё более простое, основанное на векторной алгебре какой-нибудь.

Короче -- вряд ли. Из векторной алгебры можно доказать разве что тождеством

$\dfrac12\big(\vec a\times\vec b+\vec c\times(-\vec a-\vec b-\vec c)\big)=2\cdot\dfrac{(\vec b-\vec a)\times(\vec c-\vec b)}{4}$,

но это длиннее.

 
 
 
 Re: Задача по геометрии(отношение треугольников)
Сообщение21.11.2010, 17:11 
Как вариант...
gris в сообщении #377921 писал(а):
$MN$ средняя линия в $\triangle ABC$.
Следовательно, площадь $S_{\triangle BMN}=S_{\triangle MNF}$ (где $F$ - точка пересечения диагоналей четырехугольника $ABCD$), т.к. имеют общее основание и равные высоты (свойство средней линии делить высоту треугольника пополам).

-- 21 ноя 2010 21:26 --

maxmatem в сообщении #377909 писал(а):
а точно ли точка пересечений диагоналей большого 4-х угольника совпадёт с точкой пересечения его средних линий?

Это неверно.

 
 
 
 Re: Задача по геометрии(отношение треугольников)
Сообщение21.11.2010, 18:04 
Аватара пользователя
Ну скворешня же!
Недаром мне сдавалось и сомневалось.
А всего-то нарисовать чертёж.
Изображение

 
 
 
 Re: Задача по геометрии(отношение треугольников)
Сообщение21.11.2010, 19:45 
Ваш изначальный вариант был красивше (разве что несколько лишних слов было, но это не особо принципиально, да и немного их было)

 
 
 
 Re: Задача по геометрии(отношение треугольников)
Сообщение21.11.2010, 20:22 
Аватара пользователя
ewert, если это Вы мне, то это не мой вариант, а ТСов. Наверняка он что-то подобное имел ввиду, но просто про теорему Фалеса забыл. Я изначально нарисовал пять картинок - выпуклый, невыпуклый, самопересекающийся, с нулевой стороной и с углом 180 градусов. И призадумался - что общего и какой бы способ одновременно подошёл. И вообще я, я, я...
Это Вы виноваты. Ваши слова "замечательное решение", "вариант был красивше" вызывали когнитивный диссонанс и заставили думать, что же я такого сморозил? Так до паранойи недалеко. :-)
Однако тут дело не в том. Просто сегодня целый день мокрый снег, а я то и дело на улице и весь промок и промёрз. ВотЪ. А Вы дразнитесь. :-(
gris писал(а):
Проведите $AC$ и $BD$. $S_{ABC}=4S_{MBN}$. И так 4 раза. Всё сложить и сократить

Где здесь лишнее слово? "Всё", "и так"?

 
 
 
 Re: Задача по геометрии(отношение треугольников)
Сообщение21.11.2010, 21:08 
gris в сообщении #378701 писал(а):
Где здесь лишнее слово? "Всё", "и так"?

Понятия не имею. Это всё вкусовщина. Просто я бы на Вашем месте сказал: "сумма площадей двух противоположных вылезающих треугольничков -- ровно вчетверо меньше площади исходного четырёхугольника, а сумма всех четырёх тех треугольничков -- ровно вдвое меньше", ну и соответственно. Но всё это -- лишь дело вкуса, не спорю.

 
 
 [ Сообщений: 21 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group