2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Сепарабельность...
Сообщение25.02.2010, 14:53 
Привет всем!
Решаю задачу на сепарабельность(доказать сеп-ть пр-ва X):
$X=C[0,1]$
$\|x\|=\int\limits_0^1x(t)dt$
Мне удалось доказать большую часть и осталось объяснить только один момент :arrow:
$\forall X(t)\subset C[0,1]$
$\exists (P_n(t))_{n=1}^\infty\subset P[0,1] : P_n(t)$ сходится равномерно к$ X(t)\Rightarrow P_n\rightarrow X$по интегральной метрике $\|x\|$
То есть, как получить из равномерной сходимости сходимость по такой вот метрике?

 
 
 
 Re: Сепарабельность...
Сообщение25.02.2010, 14:59 
Аватара пользователя
Ну во-первых там все-таки наверняка модуль под интегралом имелся ввиду.
А во-вторых, эту интегральную норму легко оценить сверху обычной нормой на $C[0,1]$, которая - максимум модуля на отрезке. Попробуйте, это тривиально.

 
 
 
 Re: Сепарабельность...
Сообщение25.02.2010, 17:40 
я так не умею :cry:

 
 
 
 Re: Сепарабельность...
Сообщение25.02.2010, 17:58 
Аватара пользователя
$\[\int\limits_a^b {\left| {f\left( t \right)} \right|dt}  \leqslant \int\limits_a^b {\mathop {\max }\limits_{t \in \left[ {a,b} \right]} \left| {f\left( t \right)} \right|dt}  = \mathop {\max }\limits_{t \in \left[ {a,b} \right]} \left| {f\left( t \right)} \right|\left( {b - a} \right)\]$

 
 
 
 Re: Сепарабельность...
Сообщение26.02.2010, 12:02 
Ну оценили а дальше как?

 
 
 
 Re: Сепарабельность...
Сообщение26.02.2010, 12:13 
Аватара пользователя
Scout в сообщении #292093 писал(а):
как получить из равномерной сходимости сходимость по такой вот метрике?


Ну вот я вам написал связь между нормами. Значит как связаны сходимости?

 
 
 
 Re: Сепарабельность...
Сообщение26.02.2010, 16:17 
Аватара пользователя

(Оффтоп)

Вопрос по терминологии. Возник при прочтении этой задачи, так что решил, что лучше тут офтоп, чем новая тема.

Пусть для двух норм выполнено неравенство $\| x \|_1 \leqslant C \| x \|_2$. Какая норма "сильнее", первая или вторая?


-- Пт фев 26, 2010 19:19:27 --

Вопрос топикстартеру: $P_n$ --- это произвольные многочлены с рациональными коэффициентами или что-то иное?

 
 
 
 Re: Сепарабельность...
Сообщение26.02.2010, 16:26 
Профессор Снэйп в сообщении #292603 писал(а):

(Оффтоп)

Вопрос по терминологии. Возник при прочтении этой задачи, так что решил, что лучше тут офтоп, чем новая тема.

Пусть для двух норм выполнено неравенство $\| x \|_1 \leqslant C \| x \|_2$. Какая норма "сильнее", первая или вторая?




(Оффтоп)

Вторая сильнее - она определяет более сильную топологию

 
 
 
 Re: Сепарабельность...
Сообщение26.02.2010, 16:41 
Аватара пользователя
То есть лемму можно сформулировать так: если пространство сепарабельно в сильной норме, то оно сепарабельно в слабой норме. А сепарабельность в сильной норме Вы уже доказали. Осталось доказать лемму :)

-- Пт фев 26, 2010 19:47:36 --

Scout в сообщении #292477 писал(а):
Ну оценили а дальше как?

Ну Вы даёте!!!

По определению последовательность $\{ x_n \}_{n \in \mathbb{N}}$ сходится к $x$, если числовая последовательность $\{ \| x_n - x \| \}_{n \in \mathbb{N}}$ сходится к нулю. Пусть теперь $\| x \|_1 \leqslant C \| x \|_2$ для всех $x$ и $\lim_{n \to \infty} \| x_n - x \|_2 = 0$. Что можно сказать про предел $\lim_{n \to \infty} \| x_n - x \|_1$?

Лемма о двух милиционерах (или о зажатой последовательности, где как называют), знаете такую? :)

 
 
 
 Re: Сепарабельность...
Сообщение26.02.2010, 21:30 
Про милиционеров слышал.
Лемма о зажатой последовательности (Лемма о двух милиционерах)
Если $n_0:n>n_0, xNyNzN $ и $ \lim xN=x, \lim zN=z$причем $x=z, $ то $ \lim yN=y \Rightarrow x=y=z$
Доказательство: $n>n_0, xNyNzN$. Возьмем произвольно $E>0$, тогда
$n: n>n xN(x-E,x+E) & n
$yN(x-E,x+E)$

 
 
 
 Re: Сепарабельность...
Сообщение26.02.2010, 21:35 
Аватара пользователя
Ну? $0 \leqslant \| x_n - x \|_1 \leqslant C\| x_n - x \|_2 \to 0$. Чем не два милиционера?

Вы мне на вопрос про $P_n$ не ответили. Ответьте пожалуйста, интересно.

-- Сб фев 27, 2010 00:37:21 --

P. S. Овладевайте $\LaTeX$, а то сейчас тему в карантин отправят!

 
 
 
 Re: Сепарабельность...
Сообщение26.02.2010, 21:39 
$P_n$ да это произвольные многочлены с рациональными коэффициентами.

 
 
 
 Re: Сепарабельность...
Сообщение28.02.2010, 00:41 
все иле не все

 
 
 
 Re: Сепарабельность...
Сообщение28.02.2010, 00:48 
Аватара пользователя
Ну нам как бы не нужно док-ва теоремы о милиционерах.Осознайте, что вам дано, и что надо выяснить.
В реальности ситуация такая: известно, что $0 \le a \le b$ и что $b=0$. Что же можно сказать об $a$? :)

 
 
 
 Re: Сепарабельность...
Сообщение28.02.2010, 11:18 
$a=0$

 
 
 [ Сообщений: 21 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group