2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Сколько видов уравнений на плоскости Вам известно?
Сообщение17.10.2009, 15:38 
Аватара пользователя
ewert писал(а):
Mathusic в сообщении #252369 писал(а):
Достаточно требовать $4-2^x \geqslant 0$.
Недостаточно. В области $x\leqslant2$ выражение $x^2-3x-2^x$ -- знакопеременно. Так что "достаточно" было бы явной формальной ошибкой, и даже хуже того -- фактической.

Ну, фактической-то вряд ли. Всё ж там система, в которой есть уравнение $A=B$, а значит, в этой системе неравенства $A\geqslant 0$ и $B\geqslant 0$ эквивалентны, и от одного из них можно избавиться. Вопрос только в том, насколько ТруЪ с точки зрения ЕГЭ не выделять явно ОДЗ в самом начале, а искать её по ходу дела.

 
 
 
 Re: Сколько видов уравнений на плоскости Вам известно?
Сообщение17.10.2009, 17:00 
Короче, знать бы еще, что такое ОДЗ ...

 
 
 
 Re: Сколько видов уравнений на плоскости Вам известно?
Сообщение17.10.2009, 19:20 
Аватара пользователя
Профессор Снейп и Mathusic дали одно и то же решение, отличие лишь в том, что первый провёл все стрелочки от начала к концу, а потом их обратил, а второй обращал стрелочки на каждом шаге. У первого получилось проще, поскольку при обратном ходе один вариант отпал, но эти различия не принципиальны с точки зрения буквы инструкции. Садитесь оба - нуль баллов. :D
AD в сообщении #252476 писал(а):
Короче, знать бы еще, что такое ОДЗ ...

Вот именно. Если не ошибаюсь, сам термин ОДЗ запустил в оборот Дорофеев Г.В. со товарищи в пособии для поступающих.
Никакого формального определения этой ОДЗ у них не было. Подразумевалось под ней область, которая допускается к рассмотрению в данном конкретном решении - а остальное отбрасывается из-за очевидного (или после более-менее пристального взгляда) отсутствия решений вне этой области.
То есть это дело сугубо личное - хочу отброшу, а хочу буду рассматривать заведомо лишнее, имею на это полное право.
Например, при решении уравнения типа $\sqrt A = B$ заведомо можно отбросить случай отрицательного $B$, а вот неотрицательность подкоренного выражения выполнится сразу же после возведения в квадрат, так что выписывать неравенство $A\ge 0$, а тем более находить все решения этого неравенства логикой решения никак не предусматривается.
Формального общепринятого определения ОДЗ нет и сейчас.
В разных пособиях его толкуют по разному - от требования определённости всех входящих в уравнения выражений до расширения этих требований следствиями из данного уравнения, очевидных с первого взгляда.
Оставлю в стороне вопрос как быть с ОДЗ при законном праве решающего воспользоваться заменой переменных и ограничусь примитивом.
В примере $\sqrt A = B$ в зависимости от полученного воспитания решающий может понимать систему из двух неравенств $A\ge 0, \ B\ge 0$, но может любое из двух неравенств выбросить. Если он выбросит второе, то скорее всего у него возникнут проблемы, даже если он найдёт все решения неравенства $A\ge 0$ и проверит, что среди этих решений содержатся найденные им решения уравнения $A=B^2$ :D
Вот ещё пример: $\sqrt A+\sqrt B=\sqrt C$. Формально можно потребовать неотрицательность подкоренных выражений и этим ограничиться, а ведь можно ещё добавить парочку тривиальных следствий $C\ge A,\ C\ge B$ - что почти не наблюдается. Зато массово (даже если из трёх неравенств сразу видно самое сильное), решают все три и лишь найдя пересечение выписывают ОДЗ.

 
 
 
 Re: Сколько видов уравнений на плоскости Вам известно?
Сообщение17.10.2009, 20:50 
Так, ну соффтопились, да?
bot в сообщении #252542 писал(а):
Формального общепринятого определения ОДЗ нет и сейчас.
Ну я вот два определения себе представляю.
1. Индуктивное, в стиле матлогики. То есть разбираем наше выражение от первых действий к последним, и говорим, что у выражения $a(x)+b(x)$ область определения $D(a)\cap D(b)$, у выражения $\sqrt{a(x)}$ -- $D(a)\cap\{x:a(x)\ge0\}$, и т.п.
2. Множество решений нашего уравнения (неравенства). Видимо, это есть единственный разумный способ формализовать применение дополнительных соображений типа тех, которые привел bot.

 
 
 
 Re: Сколько видов уравнений на плоскости Вам известно?
Сообщение18.10.2009, 04:11 
bot в сообщении #252542 писал(а):
Если не ошибаюсь, сам термин ОДЗ запустил в оборот Дорофеев Г.В. со товарищи в пособии для поступающих.

Маловероятно. Я поступал ещё до Дорофеева, а ОДЗ у нас уже была. К тому же я и не москвич.

bot в сообщении #252542 писал(а):
То есть это дело сугубо личное - хочу отброшу, а хочу буду рассматривать заведомо лишнее, имею на это полное право.

Во-первых, при решении неравенств такого права заведомо нет. Во-вторых, в случае уравнений формально оно есть, но фактически зачастую невыгодно (если ответ выглядит сложно).

worm2 в сообщении #252452 писал(а):
, и от одного из них можно избавиться.

Но только потом.

 
 
 
 Re: Сколько видов уравнений на плоскости Вам известно?
Сообщение18.10.2009, 12:57 
bot в сообщении #252542 писал(а):
Профессор Снейп и Mathusic дали одно и то же решение, отличие лишь в том, что первый провёл все стрелочки от начала к концу, а потом их обратил, а второй обращал стрелочки на каждом шаге. У первого получилось проще, поскольку при обратном ходе один вариант отпал, но эти различия не принципиальны с точки зрения буквы инструкции.
В школе (правда, это было очень давно) меня учили и уравнения и неравенства решать методом равносильных преобразований.
ewert в сообщении #252397 писал(а):
последняя стрелочка написана односторонней, что не есть хорошо
Согласен - это ошибка.

 
 
 [ Сообщений: 36 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group