А, вот, если считать, что арифметика – это “наука о числах”, то дело можно и так повернуть.
Известно, что точки можно складывать и умножать:
http://www.px-pict.com/9/6/4/6/1.html(выдержка из той же книги Кокстера)
Если принять, что точки – это фигуры, то получается, что арифметика – это “наука о фигурах” (для определенности будем считать, что мы говорим сейчас об арифметике положительных рациональных чисел).
И зачем Вам нужны эти замены слов? Чтобы сбить с толку пользователей теории? Можно сказать, что любая теория - это "теория о значках", потому что она с формальной точки зрения представляет собой просто набор правил манипулирования значками. Но у теорий обычно есть и какое-то назначение, касающееся её предполагаемых применений.
Чудно как-то пишите.
Разве Вам неведомо, что в математике изучаются системы объектов с точностью до изоморфизма? Что как раз-то и предполагает, что “объекты” (т. е. элементы множества-носителя системы) – это ничто, тогда как отношения между объектами – это все.
Именно отношения между объектами характеризуются в аксиоматике, а не сами объекты.
В этом суть гильбертовского подхода к аксиоматике геометрии и в этом суть цитировавшихся выше пассажей Гудстейна, сравнившего арифметику с шахматной игрой.
При изоморфных отображениях сохраняется общая структура системы, а не ее объекты. Так что числа вполне могут стать фигурами, лишь бы отношения между ними сохранились.
Получается, что все дискуссии о “природе чисел” бессмыссленны.
Аналогично можно сказать, что геометрия – это наука не о фигурах, а о свойствах отношений инцидентности и теория множеств – не о множествах а об отношении принадлежности.
Всё "хвилософствуете"?
Не “хвилософствую” я, а просто такова математическая се ля ви.
-- Чт июл 16, 2009 00:58:15 --Как?! Вы ничего не слышали о столах, стульях и пивных кружках?
Цитата:
Сначала он объяснил своей аудитории, что прямая, точка и плоскость, как их определял Евклид, не имеют математического смысла. Они появляются только в связи с теми аксиомами, которые для них выбираются. Другими словами, назвать ли их точками, прямыми, плоскостями или же столами, стульями, пивными кружками, это будут те объекты, для которых справедливы соотношения, выражаемые аксиомами. В некотором смысле это похоже на то, как значение неизвестного слова проясняется по мере использования его в различных контекстах. Каждое дополнительное предложение, в котором оно участвует, исключает некоторые значения, которые могли бы иметь смысл в предыдущих предложениях.
http://ega-math.narod.ru/Reid/p2.htm#08Да, да… Конечно…. Очень правильное наблюдение. Не зря же я писал о сепульках:
Что изучается в арифметике: числа или операции над ними?
Ведь кажется, что именно операции (точнее, свойства этих операций, например, коммутативность и т. д.).
А сами по себе числа представляют собой нечто совершенно неопределенное и неопределимое, нечто, что без всякого ущерба может быть названо “сепульками”.
Таким образом, уважаемый
epros, объекты (в частности, числа) – это всего лишь только сепульки. А вовсе не “строки вертикальных черточек”, как Вам почему-то кажется.