2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Что есть "звезда множества" по Александрову?
Сообщение12.06.2009, 23:26 
Аватара пользователя
sasha_vertreter в сообщении #221715 писал(а):
Да, все правильно. Думаю, что я понял, но я еще подумаю...

Спасибо огромное за терпение!!!

Пожалуйста.

sasha_vertreter в сообщении #221715 писал(а):
А можно,пожалуйста, еще один вопрос?
В нашем примере получилось, что покрытие Х есть само Х (целые числа) - верно? То есть надмножество Х также Х. А значит и объединение всех надмножеств М из этого покрытия дает Х.

Нет. В нашем примере покрытие это семейство всех подмножеств множества Х. (А оно включает в себя и само Х)

sasha_vertreter в сообщении #221715 писал(а):
… так,чтобы надмножество Х не совпадало с Х?

Это-то просто. Рассмотрите всё в множестве рациональных чисел. Но Вы имели в голове не это.

sasha_vertreter в сообщении #221715 писал(а):
А есть ли пример, когда звезда множества М, подмножества Х, была бы не равна Х?

Вот то, что Вы имели в голове. Это хороший вопрос.
Возьмите в Вашем примере другое покрытие. Например, семейство всех одноэлементных множеств. {1}, {2}, {3}, {4}, и т. д.

 
 
 
 Re: Что есть "звезда множества" по Александрову?
Сообщение12.06.2009, 23:30 
Аватара пользователя
Да, спасибо за все! Дальше я постараюсь сам. =)))
И верно про покрытие, я еще не точно выражаюсь...

 
 
 
 Re: Что есть "звезда множества" по Александрову?
Сообщение13.06.2009, 04:47 
Аватара пользователя
sasha_vertreter в сообщении #221723 писал(а):
И верно про покрытие, я еще не точно выражаюсь...

Меня удивляет Ваш столь большой интерес к понятию звезды множеств. Конечно, это понятие более понятно, если берётся в контексте покрытия.
Фактически, чтобы найти звезду множества нужно выделить все элементы покрытия, содержащие это множество как подмножество и затем рассмотреть объединение всех таких элементов покрытия.
Но обычно покрытия рассматриваются по другому поводу. Часто это выделение подпокрытия. Что-нибудь в таком роде: если из каждого открытого покрытия можно выделить конечное подпокрытие… или счётное подпокрытие… (по ситуации), то … Так мы получаем условия типа компактности. Посмотрите в той же книге Александрова и Вы увидите многое на эту тему, материала со звездностью много меньше.

 
 
 
 Re: Что есть "звезда множества" по Александрову?
Сообщение13.06.2009, 09:59 
Аватара пользователя
Да, спасибо.

Я просто как раз эту книжку Александрова и начал разбирать. Мне захотелось понять каждое из введенных определений, прежде чем оперировать ими. И Вы правы, определение покрытия он дает через несколько строчек после звезды множества.

Из всех книг по Общей топологии (Келли, Бурбаки, Александров) я предпочел последнего. Может быть стоит начать с Энгелькина...

 
 
 
 Re: Что есть "звезда множества" по Александрову?
Сообщение07.06.2020, 16:02 
Виктор Викторов в сообщении #221714 писал(а):
sasha_vertreter в сообщении #221712 писал(а):
получается все целые числа и есть звезда...?????

Правильно!!

А теперь не по Александрову, а по Энгелькингу. (Так проще понять).
Пусть дано множество X и его покрытие семейство A. Надеюсь, Вы помните, что покрытие это совокупность подмножеств X, объединение которых является надмножеством для X.
Так вот звезда множества М подмножества X относительно этого покрытия это объединение всех надмножеств М из этого покрытия.


Ваше определение не эквивалентно определению Александрова.
Пусть множество $M$ содержит не менее двух элементов. Пусть в семействе $A$ есть множество $A_1$, состоящее из двух элементов, такое, что один из этих элементов общий с множеством $M$, а второй элемент (обозначим $a_2$) - нет. $A_1$ не является надмножеством $M$. И пусть $A_1$ - единственное в семействе $A$ множество, которое содержит $a_2$. Тогда по определению Александрова $A_1$ входит в подсемейство, тело которого образует звезду и $a_2$ содержится в звезде. По вашему же определению $A_1$ не войдёт в подсемейство, тело которого образует звезду, и $a_2$ не содержится в звезде.

 
 
 
 Re: Что есть "звезда множества" по Александрову?
Сообщение07.06.2020, 17:20 
 i  DaddyM
Обращайте внимание на даты. Вы отвечаете на вопрос, заданный 11 лет назад.

 
 
 [ Сообщений: 21 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group