Руст писал(а):
В этом случае не случайный процесс (сама функция и множество значений фиксировано при заданном случайном значении аргумента) а "многозначная" случайная величина. Соответственно, распределение случайной величины Y находится так же как и для однозначной случайной величины. Рассчитать распределение можно суммировав по всем значениям, наподобии того, как считается плотность частиц (здесь плотность распределения У) в Эйлеровых координатах в механике по Лагранжевой плотности (плотности распределения Х) при наличии, когда в одну точку могут привести несколько траекторий частиц (частое явление при складывании траекторий). Можно дать и явные формулы для конкретных случаев.

Спасибо. У меня есть простенький примерчик с готовым графиком. Я повешу его
где нибудь и тогда обсудим. Я конечно понимаю то что Вы говорите, но в книжке таких
формул нет, а я не хотел бы ошибиться.