2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Вопрос из TФКП об аналитическом продолжении
Сообщение26.10.2024, 00:01 


26/09/17
334
Известен ли метод аналитического продолжения вещественной функции двух переменных, который может быть использован при выполнении практических расчетов?

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение26.10.2024, 07:29 
Заслуженный участник


07/08/23
1046
А функция у вас как задана? Даже если известны значения вещественно аналитической функции и её частных производных порядка $\leq N$ на каком-то дискретном множестве, а также известны оценки сверху на модули этих частных производных, следующие частные производные могут быть сколь угодно большими. То есть нельзя посчитать разложение Тейлора ни в одной точке. Это и к функциям одной переменной относится.

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение26.10.2024, 09:37 


23/02/12
3333
Есть такая книга Л. Хермандер "Введение в теорию функций нескольких комплексных переменных" или Б.Л. Фукс "Специальные главы теории аналитических функций многих комплексных переменных".

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение26.10.2024, 10:59 


26/09/17
334
dgwuqtj в сообщении #1659582 писал(а):
А функция у вас как задана?

Общий случай: плоское скалярное поле вещественной переменной $x$, произвольно определенное (заданное) в узлах ортонормированной 2D решетки. Частный случай, в котором возможно и необходимо практически вычислить аналитическое продолжение: переменная $x$ такого поля периодична в направлении каждого из базисных векторов (поле имеет конечный спектр).

-- 26.10.2024, 12:03 --

vicvolf в сообщении #1659584 писал(а):
Есть такая книга Л. Хермандер "Введение в теорию функций нескольких комплексных переменных" или Б.Л. Фукс "Специальные главы теории аналитических функций многих комплексных переменных".


Речь идет о практическом вычислении функции одной комплексной переменной.

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение26.10.2024, 11:16 
Заслуженный участник
Аватара пользователя


15/10/08
12393
maximkarimov в сообщении #1659603 писал(а):
аналитическое продолжение
Как вы это понимаете? Перескажите другими словами.

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение26.10.2024, 11:28 


26/09/17
334
Утундрий в сообщении #1659606 писал(а):
maximkarimov в сообщении #1659603 писал(а):
аналитическое продолжение
Как вы это понимаете? Перескажите другими словами.


Ок. В случае вещественной функции одной переменной свойствами аналитического продолжения обладает преобразование Гильберта. Поскольку на входе дискретные значения, постольку сначала получаем из них вещественную аналитическую функцию (например, прямым/обратным преобразованием Фурье), а уже затем восстанавливаем ее мнимую часть (преобразованием Гильберта).

Однако расширение преобразования Гильберта на вещественную функцию уже двух переменных утрачивает свойства аналитического продолжения - его результат не единственен.

Как-то так.

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение26.10.2024, 20:56 
Заслуженный участник


25/02/11
1796
Преобразование Гильберта сопоставляет действительной части функции (на прямой или окружности) ее мнимую часть на той же самой прямой/окружности. Имеется в виду это? Под продолжением обычно подразумевают распространение на более широкое множество.

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение26.10.2024, 21:02 


26/09/17
334
Имеется в виду метод аналитического продолжения вещественной функции двух переменных $u(x,y)$ на комплексной плоскости $C$. Другими словами, в результате необходимо получить голоморфную функцию $f(z)$, которая содержит $u(x,y)$.

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение26.10.2024, 22:21 
Заслуженный участник


07/08/23
1046
maximkarimov
А чем вас не устраивает обычная интерполяция тригонометрическим многочленом?

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение27.10.2024, 00:23 


26/09/17
334
Переход в комплексную область позволяет упростить решение дифференциальных уравнений.

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение27.10.2024, 09:08 
Заслуженный участник


25/02/11
1796
В случае одной комплексной переменной продолжение в комплексную область дается не преобразованием Гильберта, а интегралом Шварца.
maximkarimov в сообщении #1659603 писал(а):
Частный случай, в котором возможно и необходимо практически вычислить аналитическое продолжение: переменная $x$ такого поля периодична в направлении каждого из базисных векторов (поле имеет конечный спектр).

Как вариант, взять двумерное дискретное преобразование Фурье, записать значения функции с его помощью, а затем заменить в сумме экспоненты вроде $e^{2\pi i j k/N}$ (это пример для единичного отрезка) на $e^{2\pi i (x+iy) k}$.

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение28.10.2024, 00:19 


29/01/09
575
maximkarimov в сообщении #1659688 писал(а):
Имеется в виду метод аналитического продолжения вещественной функции двух переменных $u(x,y)$ на комплексной плоскости $C$. Другими словами, в результате необходимо получить голоморфную функцию $f(z)$, которая содержит $u(x,y)$.

что такое одна функция содержит друuую... вы как-то переформулировать можете в строгих математических теринах... А функция u(x,y) - у вас гармоническая?

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение28.10.2024, 00:30 


26/09/17
334
Да, спешил. Постараюсь завтра дать строгую формулировку. Спасибо.

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение28.10.2024, 10:37 
Заслуженный участник
Аватара пользователя


15/10/08
12393
maximkarimov в сообщении #1659833 писал(а):
Постараюсь завтра дать строгую формулировку.
Не забудьте заодно внятно описать на каком множестве задана функция.

 Профиль  
                  
 
 Re: Вопрос из TФКП об аналитическом продолжении
Сообщение28.10.2024, 10:48 


26/09/17
334
Да, конечно. Спасибо.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: maximkarimov


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group