Теорема Бэра - полное метрическое пространство является пространством второй категории.
Если метрическое пространство представимо в виде объединения счётной совокупности нигде не плотных множеств, то оно является пространством первой категории. Иначе - второй категории.
Плюс я довел до конца доказательство, но что-то я не до конца в нем уверен, хотелось бы услышать ваше мнение:
1) Мы знаем, что R - полное метрическое пространство, тогда по теореме Бэра оно является пространством второй категории.
2) Предположим противное: R - счётно. Тогда его можно представить в виде объединения одноточечных множеств:
,
, ...,
, где каждый элемент это действительные числа.
3) В прошлом пункте мы имеем объединение счетной совокупности множеств
. Тогда по определению пространств первой категории нам остается показать, что каждая из
это нигде не плотное множество в R, но мы знаем, что R - пространство второй категории (из пункта 1). Значит, надо показать, что все эти множества всюду плотны в R, чтобы было выполнено условие пространства второй категории.
4) Каждое из xn это одноточечное множество, а оно является нигде не плотным в R, значит получилось, что множество R - пространство первой категории, чего не может быть, значит предположение неверно и тогда R - несчетно